Module aws_lambda_powertools.logging.logger
Expand source code
import functools
import inspect
import logging
import os
import random
import sys
from typing import Any, Callable, Dict, Optional, Union
import jmespath
from ..shared import constants
from ..shared.functions import resolve_env_var_choice, resolve_truthy_env_var_choice
from .exceptions import InvalidLoggerSamplingRateError
from .filters import SuppressFilter
from .formatter import JsonFormatter
from .lambda_context import build_lambda_context_model
logger = logging.getLogger(__name__)
is_cold_start = True
def _is_cold_start() -> bool:
"""Verifies whether is cold start
Returns
-------
bool
cold start bool value
"""
cold_start = False
global is_cold_start
if is_cold_start:
cold_start = is_cold_start
is_cold_start = False
return cold_start
# PyCharm does not support autocomplete via getattr
# so we need to return to subclassing removed in #97
# All methods/properties continue to be proxied to inner logger
# https://github.com/awslabs/aws-lambda-powertools-python/issues/107
class Logger(logging.Logger): # lgtm [py/missing-call-to-init]
"""Creates and setups a logger to format statements in JSON.
Includes service name and any additional key=value into logs
It also accepts both service name or level explicitly via env vars
Environment variables
---------------------
POWERTOOLS_SERVICE_NAME : str
service name
LOG_LEVEL: str
logging level (e.g. INFO, DEBUG)
POWERTOOLS_LOGGER_SAMPLE_RATE: float
sampling rate ranging from 0 to 1, 1 being 100% sampling
Parameters
----------
service : str, optional
service name to be appended in logs, by default "service_undefined"
level : str, int optional
logging.level, by default "INFO"
child: bool, optional
create a child Logger named <service>.<caller_file_name>, False by default
sample_rate: float, optional
sample rate for debug calls within execution context defaults to 0.0
stream: sys.stdout, optional
valid output for a logging stream, by default sys.stdout
Example
-------
**Setups structured logging in JSON for Lambda functions with explicit service name**
>>> from aws_lambda_powertools import Logger
>>> logger = Logger(service="payment")
>>>
>>> def handler(event, context):
logger.info("Hello")
**Setups structured logging in JSON for Lambda functions using env vars**
$ export POWERTOOLS_SERVICE_NAME="payment"
$ export POWERTOOLS_LOGGER_SAMPLE_RATE=0.01 # 1% debug sampling
>>> from aws_lambda_powertools import Logger
>>> logger = Logger()
>>>
>>> def handler(event, context):
logger.info("Hello")
**Append payment_id to previously setup logger**
>>> from aws_lambda_powertools import Logger
>>> logger = Logger(service="payment")
>>>
>>> def handler(event, context):
logger.structure_logs(append=True, payment_id=event["payment_id"])
logger.info("Hello")
**Create child Logger using logging inheritance via child param**
>>> # app.py
>>> import another_file
>>> from aws_lambda_powertools import Logger
>>> logger = Logger(service="payment")
>>>
>>> # another_file.py
>>> from aws_lambda_powertools import Logger
>>> logger = Logger(service="payment", child=True)
Raises
------
InvalidLoggerSamplingRateError
When sampling rate provided is not a float
"""
def __init__(
self,
service: str = None,
level: Union[str, int] = None,
child: bool = False,
sampling_rate: float = None,
stream: sys.stdout = None,
**kwargs,
):
self.service = resolve_env_var_choice(
choice=service, env=os.getenv(constants.SERVICE_NAME_ENV, "service_undefined")
)
self.sampling_rate = resolve_env_var_choice(
choice=sampling_rate, env=os.getenv(constants.LOGGER_LOG_SAMPLING_RATE, 0.0)
)
self._is_deduplication_disabled = resolve_truthy_env_var_choice(
env=os.getenv(constants.LOGGER_LOG_DEDUPLICATION_ENV, "false")
)
self.log_level = self._get_log_level(level)
self.child = child
self._handler = logging.StreamHandler(stream) if stream is not None else logging.StreamHandler(sys.stdout)
self._default_log_keys = {"service": self.service, "sampling_rate": self.sampling_rate}
self._logger = self._get_logger()
self._init_logger(**kwargs)
def __getattr__(self, name):
# Proxy attributes not found to actual logger to support backward compatibility
# https://github.com/awslabs/aws-lambda-powertools-python/issues/97
return getattr(self._logger, name)
def _get_logger(self):
""" Returns a Logger named {self.service}, or {self.service.filename} for child loggers"""
logger_name = self.service
if self.child:
logger_name = f"{self.service}.{self._get_caller_filename()}"
return logging.getLogger(logger_name)
def _init_logger(self, **kwargs):
"""Configures new logger"""
# Skip configuration if it's a child logger or a pre-configured logger
# to prevent the following:
# a) multiple handlers being attached
# b) different sampling mechanisms
# c) multiple messages from being logged as handlers can be duplicated
is_logger_preconfigured = getattr(self._logger, "init", False)
if self.child or is_logger_preconfigured:
return
self._configure_sampling()
self._logger.setLevel(self.log_level)
self._logger.addHandler(self._handler)
self.structure_logs(**kwargs)
# Pytest Live Log feature duplicates log records for colored output
# but we explicitly add a filter for log deduplication.
# This flag disables this protection when you explicit want logs to be duplicated (#262)
if not self._is_deduplication_disabled:
logger.debug("Adding filter in root logger to suppress child logger records to bubble up")
for handler in logging.root.handlers:
# It'll add a filter to suppress any child logger from self.service
# Example: `Logger(service="order")`, where service is Order
# It'll reject all loggers starting with `order` e.g. order.checkout, order.shared
handler.addFilter(SuppressFilter(self.service))
# as per bug in #249, we should not be pre-configuring an existing logger
# therefore we set a custom attribute in the Logger that will be returned
# std logging will return the same Logger with our attribute if name is reused
logger.debug(f"Marking logger {self.service} as preconfigured")
self._logger.init = True
def _configure_sampling(self):
"""Dynamically set log level based on sampling rate
Raises
------
InvalidLoggerSamplingRateError
When sampling rate provided is not a float
"""
try:
if self.sampling_rate and random.random() <= float(self.sampling_rate):
logger.debug("Setting log level to Debug due to sampling rate")
self.log_level = logging.DEBUG
except ValueError:
raise InvalidLoggerSamplingRateError(
f"Expected a float value ranging 0 to 1, but received {self.sampling_rate} instead."
f"Please review POWERTOOLS_LOGGER_SAMPLE_RATE environment variable."
)
def inject_lambda_context(
self, lambda_handler: Callable[[Dict, Any], Any] = None, log_event: bool = None, correlation_id_path: str = None
):
"""Decorator to capture Lambda contextual info and inject into logger
Parameters
----------
lambda_handler : Callable
Method to inject the lambda context
log_event : bool, optional
Instructs logger to log Lambda Event, by default False
correlation_id_path: str, optional
Optional JMESPath for the correlation_id
Environment variables
---------------------
POWERTOOLS_LOGGER_LOG_EVENT : str
instruct logger to log Lambda Event (e.g. `"true", "True", "TRUE"`)
Example
-------
**Captures Lambda contextual runtime info (e.g memory, arn, req_id)**
from aws_lambda_powertools import Logger
logger = Logger(service="payment")
@logger.inject_lambda_context
def handler(event, context):
logger.info("Hello")
**Captures Lambda contextual runtime info and logs incoming request**
from aws_lambda_powertools import Logger
logger = Logger(service="payment")
@logger.inject_lambda_context(log_event=True)
def handler(event, context):
logger.info("Hello")
Returns
-------
decorate : Callable
Decorated lambda handler
"""
# If handler is None we've been called with parameters
# Return a partial function with args filled
if lambda_handler is None:
logger.debug("Decorator called with parameters")
return functools.partial(
self.inject_lambda_context, log_event=log_event, correlation_id_path=correlation_id_path
)
log_event = resolve_truthy_env_var_choice(
choice=log_event, env=os.getenv(constants.LOGGER_LOG_EVENT_ENV, "false")
)
@functools.wraps(lambda_handler)
def decorate(event, context):
lambda_context = build_lambda_context_model(context)
cold_start = _is_cold_start()
self.structure_logs(append=True, cold_start=cold_start, **lambda_context.__dict__)
if correlation_id_path:
self.set_correlation_id(jmespath.search(correlation_id_path, event))
if log_event:
logger.debug("Event received")
self.info(event)
return lambda_handler(event, context)
return decorate
def structure_logs(self, append: bool = False, **kwargs):
"""Sets logging formatting to JSON.
Optionally, it can append keyword arguments
to an existing logger so it is available
across future log statements.
Last keyword argument and value wins if duplicated.
Parameters
----------
append : bool, optional
[description], by default False
"""
# Child loggers don't have handlers attached, use its parent handlers
handlers = self._logger.parent.handlers if self.child else self._logger.handlers
for handler in handlers:
if append:
# Update existing formatter in an existing logger handler
handler.formatter.update_formatter(**kwargs)
else:
# Set a new formatter for a logger handler
handler.setFormatter(JsonFormatter(**self._default_log_keys, **kwargs))
def set_correlation_id(self, value: str):
"""Sets the correlation_id in the logging json
Parameters
----------
value : str
Value for the correlation id
"""
self.structure_logs(append=True, correlation_id=value)
@staticmethod
def _get_log_level(level: Union[str, int, None]) -> Union[str, int]:
""" Returns preferred log level set by the customer in upper case """
if isinstance(level, int):
return level
log_level: Optional[str] = level or os.getenv("LOG_LEVEL")
if log_level is None:
return logging.INFO
return log_level.upper()
@staticmethod
def _get_caller_filename():
""" Return caller filename by finding the caller frame """
# Current frame => _get_logger()
# Previous frame => logger.py
# Before previous frame => Caller
frame = inspect.currentframe()
caller_frame = frame.f_back.f_back.f_back
return caller_frame.f_globals["__name__"]
def set_package_logger(
level: Union[str, int] = logging.DEBUG, stream: sys.stdout = None, formatter: logging.Formatter = None
):
"""Set an additional stream handler, formatter, and log level for aws_lambda_powertools package logger.
**Package log by default is suppressed (NullHandler), this should only used for debugging.
This is separate from application Logger class utility**
Example
-------
**Enables debug logging for AWS Lambda Powertools package**
>>> from aws_lambda_powertools.logging.logger import set_package_logger
>>> set_package_logger()
Parameters
----------
level: str, int
log level, DEBUG by default
stream: sys.stdout
log stream, stdout by default
formatter: logging.Formatter
log formatter, "%(asctime)s %(name)s [%(levelname)s] %(message)s" by default
"""
if formatter is None:
formatter = logging.Formatter("%(asctime)s %(name)s [%(levelname)s] %(message)s")
if stream is None:
stream = sys.stdout
logger = logging.getLogger("aws_lambda_powertools")
logger.setLevel(level)
handler = logging.StreamHandler(stream)
handler.setFormatter(formatter)
logger.addHandler(handler)
Functions
def set_package_logger(level: Union[str, int] = 10, stream: <_io.TextIOWrapper name='
' mode='w' encoding='utf-8'> = None, formatter: logging.Formatter = None) -
Set an additional stream handler, formatter, and log level for aws_lambda_powertools package logger.
Package log by default is suppressed (NullHandler), this should only used for debugging. This is separate from application Logger class utility
Example
Enables debug logging for AWS Lambda Powertools package
>>> from aws_lambda_powertools.logging.logger import set_package_logger >>> set_package_logger()
Parameters
level
:str, int
- log level, DEBUG by default
stream
:sys.stdout
- log stream, stdout by default
formatter
:logging.Formatter
- log formatter, "%(asctime)s %(name)s [%(levelname)s] %(message)s" by default
Expand source code
def set_package_logger( level: Union[str, int] = logging.DEBUG, stream: sys.stdout = None, formatter: logging.Formatter = None ): """Set an additional stream handler, formatter, and log level for aws_lambda_powertools package logger. **Package log by default is suppressed (NullHandler), this should only used for debugging. This is separate from application Logger class utility** Example ------- **Enables debug logging for AWS Lambda Powertools package** >>> from aws_lambda_powertools.logging.logger import set_package_logger >>> set_package_logger() Parameters ---------- level: str, int log level, DEBUG by default stream: sys.stdout log stream, stdout by default formatter: logging.Formatter log formatter, "%(asctime)s %(name)s [%(levelname)s] %(message)s" by default """ if formatter is None: formatter = logging.Formatter("%(asctime)s %(name)s [%(levelname)s] %(message)s") if stream is None: stream = sys.stdout logger = logging.getLogger("aws_lambda_powertools") logger.setLevel(level) handler = logging.StreamHandler(stream) handler.setFormatter(formatter) logger.addHandler(handler)
Classes
class Logger (service: str = None, level: Union[str, int] = None, child: bool = False, sampling_rate: float = None, stream: <_io.TextIOWrapper name='
' mode='w' encoding='utf-8'> = None, **kwargs) -
Creates and setups a logger to format statements in JSON.
Includes service name and any additional key=value into logs It also accepts both service name or level explicitly via env vars
Environment Variables
POWERTOOLS_SERVICE_NAME : str service name LOG_LEVEL: str logging level (e.g. INFO, DEBUG) POWERTOOLS_LOGGER_SAMPLE_RATE: float sampling rate ranging from 0 to 1, 1 being 100% sampling
Parameters
service
:str
, optional- service name to be appended in logs, by default "service_undefined"
level
:str, int optional
- logging.level, by default "INFO"
child
:bool
, optional- create a child Logger named
. , False by default sample_rate
:float
, optional- sample rate for debug calls within execution context defaults to 0.0
stream
:sys.stdout
, optional- valid output for a logging stream, by default sys.stdout
Example
Setups structured logging in JSON for Lambda functions with explicit service name
>>> from aws_lambda_powertools import Logger >>> logger = Logger(service="payment") >>> >>> def handler(event, context): logger.info("Hello")
Setups structured logging in JSON for Lambda functions using env vars
$ export POWERTOOLS_SERVICE_NAME="payment" $ export POWERTOOLS_LOGGER_SAMPLE_RATE=0.01 # 1% debug sampling >>> from aws_lambda_powertools import Logger >>> logger = Logger() >>> >>> def handler(event, context): logger.info("Hello")
Append payment_id to previously setup logger
>>> from aws_lambda_powertools import Logger >>> logger = Logger(service="payment") >>> >>> def handler(event, context): logger.structure_logs(append=True, payment_id=event["payment_id"]) logger.info("Hello")
Create child Logger using logging inheritance via child param
>>> # app.py >>> import another_file >>> from aws_lambda_powertools import Logger >>> logger = Logger(service="payment") >>> >>> # another_file.py >>> from aws_lambda_powertools import Logger >>> logger = Logger(service="payment", child=True)
Raises
InvalidLoggerSamplingRateError
- When sampling rate provided is not a float
Initialize the logger with a name and an optional level.
Expand source code
class Logger(logging.Logger): # lgtm [py/missing-call-to-init] """Creates and setups a logger to format statements in JSON. Includes service name and any additional key=value into logs It also accepts both service name or level explicitly via env vars Environment variables --------------------- POWERTOOLS_SERVICE_NAME : str service name LOG_LEVEL: str logging level (e.g. INFO, DEBUG) POWERTOOLS_LOGGER_SAMPLE_RATE: float sampling rate ranging from 0 to 1, 1 being 100% sampling Parameters ---------- service : str, optional service name to be appended in logs, by default "service_undefined" level : str, int optional logging.level, by default "INFO" child: bool, optional create a child Logger named <service>.<caller_file_name>, False by default sample_rate: float, optional sample rate for debug calls within execution context defaults to 0.0 stream: sys.stdout, optional valid output for a logging stream, by default sys.stdout Example ------- **Setups structured logging in JSON for Lambda functions with explicit service name** >>> from aws_lambda_powertools import Logger >>> logger = Logger(service="payment") >>> >>> def handler(event, context): logger.info("Hello") **Setups structured logging in JSON for Lambda functions using env vars** $ export POWERTOOLS_SERVICE_NAME="payment" $ export POWERTOOLS_LOGGER_SAMPLE_RATE=0.01 # 1% debug sampling >>> from aws_lambda_powertools import Logger >>> logger = Logger() >>> >>> def handler(event, context): logger.info("Hello") **Append payment_id to previously setup logger** >>> from aws_lambda_powertools import Logger >>> logger = Logger(service="payment") >>> >>> def handler(event, context): logger.structure_logs(append=True, payment_id=event["payment_id"]) logger.info("Hello") **Create child Logger using logging inheritance via child param** >>> # app.py >>> import another_file >>> from aws_lambda_powertools import Logger >>> logger = Logger(service="payment") >>> >>> # another_file.py >>> from aws_lambda_powertools import Logger >>> logger = Logger(service="payment", child=True) Raises ------ InvalidLoggerSamplingRateError When sampling rate provided is not a float """ def __init__( self, service: str = None, level: Union[str, int] = None, child: bool = False, sampling_rate: float = None, stream: sys.stdout = None, **kwargs, ): self.service = resolve_env_var_choice( choice=service, env=os.getenv(constants.SERVICE_NAME_ENV, "service_undefined") ) self.sampling_rate = resolve_env_var_choice( choice=sampling_rate, env=os.getenv(constants.LOGGER_LOG_SAMPLING_RATE, 0.0) ) self._is_deduplication_disabled = resolve_truthy_env_var_choice( env=os.getenv(constants.LOGGER_LOG_DEDUPLICATION_ENV, "false") ) self.log_level = self._get_log_level(level) self.child = child self._handler = logging.StreamHandler(stream) if stream is not None else logging.StreamHandler(sys.stdout) self._default_log_keys = {"service": self.service, "sampling_rate": self.sampling_rate} self._logger = self._get_logger() self._init_logger(**kwargs) def __getattr__(self, name): # Proxy attributes not found to actual logger to support backward compatibility # https://github.com/awslabs/aws-lambda-powertools-python/issues/97 return getattr(self._logger, name) def _get_logger(self): """ Returns a Logger named {self.service}, or {self.service.filename} for child loggers""" logger_name = self.service if self.child: logger_name = f"{self.service}.{self._get_caller_filename()}" return logging.getLogger(logger_name) def _init_logger(self, **kwargs): """Configures new logger""" # Skip configuration if it's a child logger or a pre-configured logger # to prevent the following: # a) multiple handlers being attached # b) different sampling mechanisms # c) multiple messages from being logged as handlers can be duplicated is_logger_preconfigured = getattr(self._logger, "init", False) if self.child or is_logger_preconfigured: return self._configure_sampling() self._logger.setLevel(self.log_level) self._logger.addHandler(self._handler) self.structure_logs(**kwargs) # Pytest Live Log feature duplicates log records for colored output # but we explicitly add a filter for log deduplication. # This flag disables this protection when you explicit want logs to be duplicated (#262) if not self._is_deduplication_disabled: logger.debug("Adding filter in root logger to suppress child logger records to bubble up") for handler in logging.root.handlers: # It'll add a filter to suppress any child logger from self.service # Example: `Logger(service="order")`, where service is Order # It'll reject all loggers starting with `order` e.g. order.checkout, order.shared handler.addFilter(SuppressFilter(self.service)) # as per bug in #249, we should not be pre-configuring an existing logger # therefore we set a custom attribute in the Logger that will be returned # std logging will return the same Logger with our attribute if name is reused logger.debug(f"Marking logger {self.service} as preconfigured") self._logger.init = True def _configure_sampling(self): """Dynamically set log level based on sampling rate Raises ------ InvalidLoggerSamplingRateError When sampling rate provided is not a float """ try: if self.sampling_rate and random.random() <= float(self.sampling_rate): logger.debug("Setting log level to Debug due to sampling rate") self.log_level = logging.DEBUG except ValueError: raise InvalidLoggerSamplingRateError( f"Expected a float value ranging 0 to 1, but received {self.sampling_rate} instead." f"Please review POWERTOOLS_LOGGER_SAMPLE_RATE environment variable." ) def inject_lambda_context( self, lambda_handler: Callable[[Dict, Any], Any] = None, log_event: bool = None, correlation_id_path: str = None ): """Decorator to capture Lambda contextual info and inject into logger Parameters ---------- lambda_handler : Callable Method to inject the lambda context log_event : bool, optional Instructs logger to log Lambda Event, by default False correlation_id_path: str, optional Optional JMESPath for the correlation_id Environment variables --------------------- POWERTOOLS_LOGGER_LOG_EVENT : str instruct logger to log Lambda Event (e.g. `"true", "True", "TRUE"`) Example ------- **Captures Lambda contextual runtime info (e.g memory, arn, req_id)** from aws_lambda_powertools import Logger logger = Logger(service="payment") @logger.inject_lambda_context def handler(event, context): logger.info("Hello") **Captures Lambda contextual runtime info and logs incoming request** from aws_lambda_powertools import Logger logger = Logger(service="payment") @logger.inject_lambda_context(log_event=True) def handler(event, context): logger.info("Hello") Returns ------- decorate : Callable Decorated lambda handler """ # If handler is None we've been called with parameters # Return a partial function with args filled if lambda_handler is None: logger.debug("Decorator called with parameters") return functools.partial( self.inject_lambda_context, log_event=log_event, correlation_id_path=correlation_id_path ) log_event = resolve_truthy_env_var_choice( choice=log_event, env=os.getenv(constants.LOGGER_LOG_EVENT_ENV, "false") ) @functools.wraps(lambda_handler) def decorate(event, context): lambda_context = build_lambda_context_model(context) cold_start = _is_cold_start() self.structure_logs(append=True, cold_start=cold_start, **lambda_context.__dict__) if correlation_id_path: self.set_correlation_id(jmespath.search(correlation_id_path, event)) if log_event: logger.debug("Event received") self.info(event) return lambda_handler(event, context) return decorate def structure_logs(self, append: bool = False, **kwargs): """Sets logging formatting to JSON. Optionally, it can append keyword arguments to an existing logger so it is available across future log statements. Last keyword argument and value wins if duplicated. Parameters ---------- append : bool, optional [description], by default False """ # Child loggers don't have handlers attached, use its parent handlers handlers = self._logger.parent.handlers if self.child else self._logger.handlers for handler in handlers: if append: # Update existing formatter in an existing logger handler handler.formatter.update_formatter(**kwargs) else: # Set a new formatter for a logger handler handler.setFormatter(JsonFormatter(**self._default_log_keys, **kwargs)) def set_correlation_id(self, value: str): """Sets the correlation_id in the logging json Parameters ---------- value : str Value for the correlation id """ self.structure_logs(append=True, correlation_id=value) @staticmethod def _get_log_level(level: Union[str, int, None]) -> Union[str, int]: """ Returns preferred log level set by the customer in upper case """ if isinstance(level, int): return level log_level: Optional[str] = level or os.getenv("LOG_LEVEL") if log_level is None: return logging.INFO return log_level.upper() @staticmethod def _get_caller_filename(): """ Return caller filename by finding the caller frame """ # Current frame => _get_logger() # Previous frame => logger.py # Before previous frame => Caller frame = inspect.currentframe() caller_frame = frame.f_back.f_back.f_back return caller_frame.f_globals["__name__"]
Ancestors
- logging.Logger
- logging.Filterer
Methods
def inject_lambda_context(self, lambda_handler: Callable[[Dict, Any], Any] = None, log_event: bool = None, correlation_id_path: str = None)
-
Decorator to capture Lambda contextual info and inject into logger
Parameters
lambda_handler
:Callable
- Method to inject the lambda context
log_event
:bool
, optional- Instructs logger to log Lambda Event, by default False
correlation_id_path
:str
, optional- Optional JMESPath for the correlation_id
Environment Variables
POWERTOOLS_LOGGER_LOG_EVENT : str instruct logger to log Lambda Event (e.g.
"true", "True", "TRUE"
)Example
Captures Lambda contextual runtime info (e.g memory, arn, req_id)
from aws_lambda_powertools import Logger logger = Logger(service="payment") @logger.inject_lambda_context def handler(event, context): logger.info("Hello")
Captures Lambda contextual runtime info and logs incoming request
from aws_lambda_powertools import Logger logger = Logger(service="payment") @logger.inject_lambda_context(log_event=True) def handler(event, context): logger.info("Hello")
Returns
decorate
:Callable
- Decorated lambda handler
Expand source code
def inject_lambda_context( self, lambda_handler: Callable[[Dict, Any], Any] = None, log_event: bool = None, correlation_id_path: str = None ): """Decorator to capture Lambda contextual info and inject into logger Parameters ---------- lambda_handler : Callable Method to inject the lambda context log_event : bool, optional Instructs logger to log Lambda Event, by default False correlation_id_path: str, optional Optional JMESPath for the correlation_id Environment variables --------------------- POWERTOOLS_LOGGER_LOG_EVENT : str instruct logger to log Lambda Event (e.g. `"true", "True", "TRUE"`) Example ------- **Captures Lambda contextual runtime info (e.g memory, arn, req_id)** from aws_lambda_powertools import Logger logger = Logger(service="payment") @logger.inject_lambda_context def handler(event, context): logger.info("Hello") **Captures Lambda contextual runtime info and logs incoming request** from aws_lambda_powertools import Logger logger = Logger(service="payment") @logger.inject_lambda_context(log_event=True) def handler(event, context): logger.info("Hello") Returns ------- decorate : Callable Decorated lambda handler """ # If handler is None we've been called with parameters # Return a partial function with args filled if lambda_handler is None: logger.debug("Decorator called with parameters") return functools.partial( self.inject_lambda_context, log_event=log_event, correlation_id_path=correlation_id_path ) log_event = resolve_truthy_env_var_choice( choice=log_event, env=os.getenv(constants.LOGGER_LOG_EVENT_ENV, "false") ) @functools.wraps(lambda_handler) def decorate(event, context): lambda_context = build_lambda_context_model(context) cold_start = _is_cold_start() self.structure_logs(append=True, cold_start=cold_start, **lambda_context.__dict__) if correlation_id_path: self.set_correlation_id(jmespath.search(correlation_id_path, event)) if log_event: logger.debug("Event received") self.info(event) return lambda_handler(event, context) return decorate
def set_correlation_id(self, value: str)
-
Sets the correlation_id in the logging json
Parameters
value
:str
- Value for the correlation id
Expand source code
def set_correlation_id(self, value: str): """Sets the correlation_id in the logging json Parameters ---------- value : str Value for the correlation id """ self.structure_logs(append=True, correlation_id=value)
def structure_logs(self, append: bool = False, **kwargs)
-
Sets logging formatting to JSON.
Optionally, it can append keyword arguments to an existing logger so it is available across future log statements.
Last keyword argument and value wins if duplicated.
Parameters
append
:bool
, optional- [description], by default False
Expand source code
def structure_logs(self, append: bool = False, **kwargs): """Sets logging formatting to JSON. Optionally, it can append keyword arguments to an existing logger so it is available across future log statements. Last keyword argument and value wins if duplicated. Parameters ---------- append : bool, optional [description], by default False """ # Child loggers don't have handlers attached, use its parent handlers handlers = self._logger.parent.handlers if self.child else self._logger.handlers for handler in handlers: if append: # Update existing formatter in an existing logger handler handler.formatter.update_formatter(**kwargs) else: # Set a new formatter for a logger handler handler.setFormatter(JsonFormatter(**self._default_log_keys, **kwargs))