Module aws_lambda_powertools.metrics.metrics
Expand source code
import functools
import json
import logging
import warnings
from typing import Any, Callable, Dict, Optional, Union, cast
from ..shared.types import AnyCallableT
from .base import MetricManager, MetricUnit
from .metric import single_metric
logger = logging.getLogger(__name__)
is_cold_start = True
class Metrics(MetricManager):
"""Metrics create an EMF object with up to 100 metrics
Use Metrics when you need to create multiple metrics that have
dimensions in common (e.g. service_name="payment").
Metrics up to 100 metrics in memory and are shared across
all its instances. That means it can be safely instantiated outside
of a Lambda function, or anywhere else.
A decorator (log_metrics) is provided so metrics are published at the end of its execution.
If more than 100 metrics are added at a given function execution,
these metrics are serialized and published before adding a given metric
to prevent metric truncation.
Example
-------
**Creates a few metrics and publish at the end of a function execution**
from aws_lambda_powertools import Metrics
metrics = Metrics(namespace="ServerlessAirline", service="payment")
@metrics.log_metrics(capture_cold_start_metric=True)
def lambda_handler():
metrics.add_metric(name="BookingConfirmation", unit="Count", value=1)
metrics.add_dimension(name="function_version", value="$LATEST")
return True
Environment variables
---------------------
POWERTOOLS_METRICS_NAMESPACE : str
metric namespace
POWERTOOLS_SERVICE_NAME : str
service name used for default dimension
Parameters
----------
service : str, optional
service name to be used as metric dimension, by default "service_undefined"
namespace : str
Namespace for metrics
Raises
------
MetricUnitError
When metric metric isn't supported by CloudWatch
MetricValueError
When metric value isn't a number
SchemaValidationError
When metric object fails EMF schema validation
"""
_metrics: Dict[str, Any] = {}
_dimensions: Dict[str, str] = {}
_metadata: Dict[str, Any] = {}
_default_dimensions: Dict[str, Any] = {}
def __init__(self, service: Optional[str] = None, namespace: Optional[str] = None):
self.metric_set = self._metrics
self.service = service
self.namespace: Optional[str] = namespace
self.metadata_set = self._metadata
self.default_dimensions = self._default_dimensions
self.dimension_set = {**self._default_dimensions, **self._dimensions}
super().__init__(
metric_set=self.metric_set,
dimension_set=self.dimension_set,
namespace=self.namespace,
metadata_set=self.metadata_set,
service=self.service,
)
def set_default_dimensions(self, **dimensions) -> None:
"""Persist dimensions across Lambda invocations
Parameters
----------
dimensions : Dict[str, Any], optional
metric dimensions as key=value
Example
-------
**Sets some default dimensions that will always be present across metrics and invocations**
from aws_lambda_powertools import Metrics
metrics = Metrics(namespace="ServerlessAirline", service="payment")
metrics.set_default_dimensions(environment="demo", another="one")
@metrics.log_metrics()
def lambda_handler():
return True
"""
for name, value in dimensions.items():
self.add_dimension(name, value)
self.default_dimensions.update(**dimensions)
def clear_default_dimensions(self) -> None:
self.default_dimensions.clear()
def clear_metrics(self) -> None:
logger.debug("Clearing out existing metric set from memory")
self.metric_set.clear()
self.dimension_set.clear()
self.metadata_set.clear()
self.set_default_dimensions(**self.default_dimensions) # re-add default dimensions
def log_metrics(
self,
lambda_handler: Union[Callable[[Dict, Any], Any], Optional[Callable[[Dict, Any, Optional[Dict]], Any]]] = None,
capture_cold_start_metric: bool = False,
raise_on_empty_metrics: bool = False,
default_dimensions: Optional[Dict[str, str]] = None,
) -> AnyCallableT:
"""Decorator to serialize and publish metrics at the end of a function execution.
Be aware that the log_metrics **does call* the decorated function (e.g. lambda_handler).
Example
-------
**Lambda function using tracer and metrics decorators**
from aws_lambda_powertools import Metrics, Tracer
metrics = Metrics(service="payment")
tracer = Tracer(service="payment")
@tracer.capture_lambda_handler
@metrics.log_metrics
def handler(event, context):
...
Parameters
----------
lambda_handler : Callable[[Any, Any], Any], optional
lambda function handler, by default None
capture_cold_start_metric : bool, optional
captures cold start metric, by default False
raise_on_empty_metrics : bool, optional
raise exception if no metrics are emitted, by default False
default_dimensions: Dict[str, str], optional
metric dimensions as key=value that will always be present
Raises
------
e
Propagate error received
"""
# If handler is None we've been called with parameters
# Return a partial function with args filled
if lambda_handler is None:
logger.debug("Decorator called with parameters")
return cast(
AnyCallableT,
functools.partial(
self.log_metrics,
capture_cold_start_metric=capture_cold_start_metric,
raise_on_empty_metrics=raise_on_empty_metrics,
default_dimensions=default_dimensions,
),
)
@functools.wraps(lambda_handler)
def decorate(event, context):
try:
if default_dimensions:
self.set_default_dimensions(**default_dimensions)
response = lambda_handler(event, context)
if capture_cold_start_metric:
self.__add_cold_start_metric(context=context)
finally:
if not raise_on_empty_metrics and not self.metric_set:
warnings.warn("No metrics to publish, skipping")
else:
metrics = self.serialize_metric_set()
self.clear_metrics()
print(json.dumps(metrics, separators=(",", ":")))
return response
return cast(AnyCallableT, decorate)
def __add_cold_start_metric(self, context: Any) -> None:
"""Add cold start metric and function_name dimension
Parameters
----------
context : Any
Lambda context
"""
global is_cold_start
if is_cold_start:
logger.debug("Adding cold start metric and function_name dimension")
with single_metric(name="ColdStart", unit=MetricUnit.Count, value=1, namespace=self.namespace) as metric:
metric.add_dimension(name="function_name", value=context.function_name)
metric.add_dimension(name="service", value=self.service)
is_cold_start = False
Classes
class Metrics (service: Optional[str] = None, namespace: Optional[str] = None)
-
Metrics create an EMF object with up to 100 metrics
Use Metrics when you need to create multiple metrics that have dimensions in common (e.g. service_name="payment").
Metrics up to 100 metrics in memory and are shared across all its instances. That means it can be safely instantiated outside of a Lambda function, or anywhere else.
A decorator (log_metrics) is provided so metrics are published at the end of its execution. If more than 100 metrics are added at a given function execution, these metrics are serialized and published before adding a given metric to prevent metric truncation.
Example
Creates a few metrics and publish at the end of a function execution
from aws_lambda_powertools import Metrics metrics = Metrics(namespace="ServerlessAirline", service="payment") @metrics.log_metrics(capture_cold_start_metric=True) def lambda_handler(): metrics.add_metric(name="BookingConfirmation", unit="Count", value=1) metrics.add_dimension(name="function_version", value="$LATEST") return True
Environment Variables
POWERTOOLS_METRICS_NAMESPACE : str metric namespace POWERTOOLS_SERVICE_NAME : str service name used for default dimension
Parameters
service
:str
, optional- service name to be used as metric dimension, by default "service_undefined"
namespace
:str
- Namespace for metrics
Raises
MetricUnitError
- When metric metric isn't supported by CloudWatch
MetricValueError
- When metric value isn't a number
SchemaValidationError
- When metric object fails EMF schema validation
Expand source code
class Metrics(MetricManager): """Metrics create an EMF object with up to 100 metrics Use Metrics when you need to create multiple metrics that have dimensions in common (e.g. service_name="payment"). Metrics up to 100 metrics in memory and are shared across all its instances. That means it can be safely instantiated outside of a Lambda function, or anywhere else. A decorator (log_metrics) is provided so metrics are published at the end of its execution. If more than 100 metrics are added at a given function execution, these metrics are serialized and published before adding a given metric to prevent metric truncation. Example ------- **Creates a few metrics and publish at the end of a function execution** from aws_lambda_powertools import Metrics metrics = Metrics(namespace="ServerlessAirline", service="payment") @metrics.log_metrics(capture_cold_start_metric=True) def lambda_handler(): metrics.add_metric(name="BookingConfirmation", unit="Count", value=1) metrics.add_dimension(name="function_version", value="$LATEST") return True Environment variables --------------------- POWERTOOLS_METRICS_NAMESPACE : str metric namespace POWERTOOLS_SERVICE_NAME : str service name used for default dimension Parameters ---------- service : str, optional service name to be used as metric dimension, by default "service_undefined" namespace : str Namespace for metrics Raises ------ MetricUnitError When metric metric isn't supported by CloudWatch MetricValueError When metric value isn't a number SchemaValidationError When metric object fails EMF schema validation """ _metrics: Dict[str, Any] = {} _dimensions: Dict[str, str] = {} _metadata: Dict[str, Any] = {} _default_dimensions: Dict[str, Any] = {} def __init__(self, service: Optional[str] = None, namespace: Optional[str] = None): self.metric_set = self._metrics self.service = service self.namespace: Optional[str] = namespace self.metadata_set = self._metadata self.default_dimensions = self._default_dimensions self.dimension_set = {**self._default_dimensions, **self._dimensions} super().__init__( metric_set=self.metric_set, dimension_set=self.dimension_set, namespace=self.namespace, metadata_set=self.metadata_set, service=self.service, ) def set_default_dimensions(self, **dimensions) -> None: """Persist dimensions across Lambda invocations Parameters ---------- dimensions : Dict[str, Any], optional metric dimensions as key=value Example ------- **Sets some default dimensions that will always be present across metrics and invocations** from aws_lambda_powertools import Metrics metrics = Metrics(namespace="ServerlessAirline", service="payment") metrics.set_default_dimensions(environment="demo", another="one") @metrics.log_metrics() def lambda_handler(): return True """ for name, value in dimensions.items(): self.add_dimension(name, value) self.default_dimensions.update(**dimensions) def clear_default_dimensions(self) -> None: self.default_dimensions.clear() def clear_metrics(self) -> None: logger.debug("Clearing out existing metric set from memory") self.metric_set.clear() self.dimension_set.clear() self.metadata_set.clear() self.set_default_dimensions(**self.default_dimensions) # re-add default dimensions def log_metrics( self, lambda_handler: Union[Callable[[Dict, Any], Any], Optional[Callable[[Dict, Any, Optional[Dict]], Any]]] = None, capture_cold_start_metric: bool = False, raise_on_empty_metrics: bool = False, default_dimensions: Optional[Dict[str, str]] = None, ) -> AnyCallableT: """Decorator to serialize and publish metrics at the end of a function execution. Be aware that the log_metrics **does call* the decorated function (e.g. lambda_handler). Example ------- **Lambda function using tracer and metrics decorators** from aws_lambda_powertools import Metrics, Tracer metrics = Metrics(service="payment") tracer = Tracer(service="payment") @tracer.capture_lambda_handler @metrics.log_metrics def handler(event, context): ... Parameters ---------- lambda_handler : Callable[[Any, Any], Any], optional lambda function handler, by default None capture_cold_start_metric : bool, optional captures cold start metric, by default False raise_on_empty_metrics : bool, optional raise exception if no metrics are emitted, by default False default_dimensions: Dict[str, str], optional metric dimensions as key=value that will always be present Raises ------ e Propagate error received """ # If handler is None we've been called with parameters # Return a partial function with args filled if lambda_handler is None: logger.debug("Decorator called with parameters") return cast( AnyCallableT, functools.partial( self.log_metrics, capture_cold_start_metric=capture_cold_start_metric, raise_on_empty_metrics=raise_on_empty_metrics, default_dimensions=default_dimensions, ), ) @functools.wraps(lambda_handler) def decorate(event, context): try: if default_dimensions: self.set_default_dimensions(**default_dimensions) response = lambda_handler(event, context) if capture_cold_start_metric: self.__add_cold_start_metric(context=context) finally: if not raise_on_empty_metrics and not self.metric_set: warnings.warn("No metrics to publish, skipping") else: metrics = self.serialize_metric_set() self.clear_metrics() print(json.dumps(metrics, separators=(",", ":"))) return response return cast(AnyCallableT, decorate) def __add_cold_start_metric(self, context: Any) -> None: """Add cold start metric and function_name dimension Parameters ---------- context : Any Lambda context """ global is_cold_start if is_cold_start: logger.debug("Adding cold start metric and function_name dimension") with single_metric(name="ColdStart", unit=MetricUnit.Count, value=1, namespace=self.namespace) as metric: metric.add_dimension(name="function_name", value=context.function_name) metric.add_dimension(name="service", value=self.service) is_cold_start = False
Ancestors
Methods
def clear_default_dimensions(self) ‑> None
-
Expand source code
def clear_default_dimensions(self) -> None: self.default_dimensions.clear()
def clear_metrics(self) ‑> None
-
Expand source code
def clear_metrics(self) -> None: logger.debug("Clearing out existing metric set from memory") self.metric_set.clear() self.dimension_set.clear() self.metadata_set.clear() self.set_default_dimensions(**self.default_dimensions) # re-add default dimensions
def log_metrics(self, lambda_handler: Union[Callable[[Dict[~KT, ~VT], Any], Any], Callable[[Dict[~KT, ~VT], Any, Optional[Dict[~KT, ~VT]]], Any], None] = None, capture_cold_start_metric: bool = False, raise_on_empty_metrics: bool = False, default_dimensions: Optional[Dict[str, str]] = None) ‑> ~AnyCallableT
-
Decorator to serialize and publish metrics at the end of a function execution.
Be aware that the log_metrics *does call the decorated function (e.g. lambda_handler).
Example
Lambda function using tracer and metrics decorators
from aws_lambda_powertools import Metrics, Tracer metrics = Metrics(service="payment") tracer = Tracer(service="payment") @tracer.capture_lambda_handler @metrics.log_metrics def handler(event, context): ...
Parameters
lambda_handler
:Callable[[Any, Any], Any]
, optional- lambda function handler, by default None
capture_cold_start_metric
:bool
, optional- captures cold start metric, by default False
raise_on_empty_metrics
:bool
, optional- raise exception if no metrics are emitted, by default False
default_dimensions
:Dict[str, str]
, optional- metric dimensions as key=value that will always be present
Raises
e
- Propagate error received
Expand source code
def log_metrics( self, lambda_handler: Union[Callable[[Dict, Any], Any], Optional[Callable[[Dict, Any, Optional[Dict]], Any]]] = None, capture_cold_start_metric: bool = False, raise_on_empty_metrics: bool = False, default_dimensions: Optional[Dict[str, str]] = None, ) -> AnyCallableT: """Decorator to serialize and publish metrics at the end of a function execution. Be aware that the log_metrics **does call* the decorated function (e.g. lambda_handler). Example ------- **Lambda function using tracer and metrics decorators** from aws_lambda_powertools import Metrics, Tracer metrics = Metrics(service="payment") tracer = Tracer(service="payment") @tracer.capture_lambda_handler @metrics.log_metrics def handler(event, context): ... Parameters ---------- lambda_handler : Callable[[Any, Any], Any], optional lambda function handler, by default None capture_cold_start_metric : bool, optional captures cold start metric, by default False raise_on_empty_metrics : bool, optional raise exception if no metrics are emitted, by default False default_dimensions: Dict[str, str], optional metric dimensions as key=value that will always be present Raises ------ e Propagate error received """ # If handler is None we've been called with parameters # Return a partial function with args filled if lambda_handler is None: logger.debug("Decorator called with parameters") return cast( AnyCallableT, functools.partial( self.log_metrics, capture_cold_start_metric=capture_cold_start_metric, raise_on_empty_metrics=raise_on_empty_metrics, default_dimensions=default_dimensions, ), ) @functools.wraps(lambda_handler) def decorate(event, context): try: if default_dimensions: self.set_default_dimensions(**default_dimensions) response = lambda_handler(event, context) if capture_cold_start_metric: self.__add_cold_start_metric(context=context) finally: if not raise_on_empty_metrics and not self.metric_set: warnings.warn("No metrics to publish, skipping") else: metrics = self.serialize_metric_set() self.clear_metrics() print(json.dumps(metrics, separators=(",", ":"))) return response return cast(AnyCallableT, decorate)
def set_default_dimensions(self, **dimensions) ‑> None
-
Persist dimensions across Lambda invocations
Parameters
dimensions
:Dict[str, Any]
, optional- metric dimensions as key=value
Example
Sets some default dimensions that will always be present across metrics and invocations
from aws_lambda_powertools import Metrics metrics = Metrics(namespace="ServerlessAirline", service="payment") metrics.set_default_dimensions(environment="demo", another="one") @metrics.log_metrics() def lambda_handler(): return True
Expand source code
def set_default_dimensions(self, **dimensions) -> None: """Persist dimensions across Lambda invocations Parameters ---------- dimensions : Dict[str, Any], optional metric dimensions as key=value Example ------- **Sets some default dimensions that will always be present across metrics and invocations** from aws_lambda_powertools import Metrics metrics = Metrics(namespace="ServerlessAirline", service="payment") metrics.set_default_dimensions(environment="demo", another="one") @metrics.log_metrics() def lambda_handler(): return True """ for name, value in dimensions.items(): self.add_dimension(name, value) self.default_dimensions.update(**dimensions)
Inherited members