Module aws_lambda_powertools.metrics.metrics

Expand source code
import functools
import json
import logging
import warnings
from typing import Any, Callable, Dict, Optional, Union, cast

from ..shared.types import AnyCallableT
from .base import MetricManager, MetricUnit
from .metric import single_metric

logger = logging.getLogger(__name__)

is_cold_start = True


class Metrics(MetricManager):
    """Metrics create an EMF object with up to 100 metrics

    Use Metrics when you need to create multiple metrics that have
    dimensions in common (e.g. service_name="payment").

    Metrics up to 100 metrics in memory and are shared across
    all its instances. That means it can be safely instantiated outside
    of a Lambda function, or anywhere else.

    A decorator (log_metrics) is provided so metrics are published at the end of its execution.
    If more than 100 metrics are added at a given function execution,
    these metrics are serialized and published before adding a given metric
    to prevent metric truncation.

    Example
    -------
    **Creates a few metrics and publish at the end of a function execution**

        from aws_lambda_powertools import Metrics

        metrics = Metrics(namespace="ServerlessAirline", service="payment")

        @metrics.log_metrics(capture_cold_start_metric=True)
        def lambda_handler():
            metrics.add_metric(name="BookingConfirmation", unit="Count", value=1)
            metrics.add_dimension(name="function_version", value="$LATEST")

            return True

    Environment variables
    ---------------------
    POWERTOOLS_METRICS_NAMESPACE : str
        metric namespace
    POWERTOOLS_SERVICE_NAME : str
        service name used for default dimension

    Parameters
    ----------
    service : str, optional
        service name to be used as metric dimension, by default "service_undefined"
    namespace : str
        Namespace for metrics

    Raises
    ------
    MetricUnitError
        When metric metric isn't supported by CloudWatch
    MetricValueError
        When metric value isn't a number
    SchemaValidationError
        When metric object fails EMF schema validation
    """

    _metrics: Dict[str, Any] = {}
    _dimensions: Dict[str, str] = {}
    _metadata: Dict[str, Any] = {}
    _default_dimensions: Dict[str, Any] = {}

    def __init__(self, service: Optional[str] = None, namespace: Optional[str] = None):
        self.metric_set = self._metrics
        self.service = service
        self.namespace: Optional[str] = namespace
        self.metadata_set = self._metadata
        self.default_dimensions = self._default_dimensions
        self.dimension_set = {**self._default_dimensions, **self._dimensions}

        super().__init__(
            metric_set=self.metric_set,
            dimension_set=self.dimension_set,
            namespace=self.namespace,
            metadata_set=self.metadata_set,
            service=self.service,
        )

    def set_default_dimensions(self, **dimensions) -> None:
        """Persist dimensions across Lambda invocations

        Parameters
        ----------
        dimensions : Dict[str, Any], optional
            metric dimensions as key=value

        Example
        -------
        **Sets some default dimensions that will always be present across metrics and invocations**

            from aws_lambda_powertools import Metrics

            metrics = Metrics(namespace="ServerlessAirline", service="payment")
            metrics.set_default_dimensions(environment="demo", another="one")

            @metrics.log_metrics()
            def lambda_handler():
                   return True
        """
        for name, value in dimensions.items():
            self.add_dimension(name, value)

        self.default_dimensions.update(**dimensions)

    def clear_default_dimensions(self) -> None:
        self.default_dimensions.clear()

    def clear_metrics(self) -> None:
        logger.debug("Clearing out existing metric set from memory")
        self.metric_set.clear()
        self.dimension_set.clear()
        self.metadata_set.clear()
        self.set_default_dimensions(**self.default_dimensions)  # re-add default dimensions

    def log_metrics(
        self,
        lambda_handler: Union[Callable[[Dict, Any], Any], Optional[Callable[[Dict, Any, Optional[Dict]], Any]]] = None,
        capture_cold_start_metric: bool = False,
        raise_on_empty_metrics: bool = False,
        default_dimensions: Optional[Dict[str, str]] = None,
    ) -> AnyCallableT:
        """Decorator to serialize and publish metrics at the end of a function execution.

        Be aware that the log_metrics **does call* the decorated function (e.g. lambda_handler).

        Example
        -------
        **Lambda function using tracer and metrics decorators**

            from aws_lambda_powertools import Metrics, Tracer

            metrics = Metrics(service="payment")
            tracer = Tracer(service="payment")

            @tracer.capture_lambda_handler
            @metrics.log_metrics
            def handler(event, context):
                    ...

        Parameters
        ----------
        lambda_handler : Callable[[Any, Any], Any], optional
            lambda function handler, by default None
        capture_cold_start_metric : bool, optional
            captures cold start metric, by default False
        raise_on_empty_metrics : bool, optional
            raise exception if no metrics are emitted, by default False
        default_dimensions: Dict[str, str], optional
            metric dimensions as key=value that will always be present

        Raises
        ------
        e
            Propagate error received
        """

        # If handler is None we've been called with parameters
        # Return a partial function with args filled
        if lambda_handler is None:
            logger.debug("Decorator called with parameters")
            return cast(
                AnyCallableT,
                functools.partial(
                    self.log_metrics,
                    capture_cold_start_metric=capture_cold_start_metric,
                    raise_on_empty_metrics=raise_on_empty_metrics,
                    default_dimensions=default_dimensions,
                ),
            )

        @functools.wraps(lambda_handler)
        def decorate(event, context):
            try:
                if default_dimensions:
                    self.set_default_dimensions(**default_dimensions)
                response = lambda_handler(event, context)
                if capture_cold_start_metric:
                    self.__add_cold_start_metric(context=context)
            finally:
                if not raise_on_empty_metrics and not self.metric_set:
                    warnings.warn("No metrics to publish, skipping")
                else:
                    metrics = self.serialize_metric_set()
                    self.clear_metrics()
                    print(json.dumps(metrics, separators=(",", ":")))

            return response

        return cast(AnyCallableT, decorate)

    def __add_cold_start_metric(self, context: Any) -> None:
        """Add cold start metric and function_name dimension

        Parameters
        ----------
        context : Any
            Lambda context
        """
        global is_cold_start
        if is_cold_start:
            logger.debug("Adding cold start metric and function_name dimension")
            with single_metric(name="ColdStart", unit=MetricUnit.Count, value=1, namespace=self.namespace) as metric:
                metric.add_dimension(name="function_name", value=context.function_name)
                metric.add_dimension(name="service", value=self.service)
                is_cold_start = False

Classes

class Metrics (service: Optional[str] = None, namespace: Optional[str] = None)

Metrics create an EMF object with up to 100 metrics

Use Metrics when you need to create multiple metrics that have dimensions in common (e.g. service_name="payment").

Metrics up to 100 metrics in memory and are shared across all its instances. That means it can be safely instantiated outside of a Lambda function, or anywhere else.

A decorator (log_metrics) is provided so metrics are published at the end of its execution. If more than 100 metrics are added at a given function execution, these metrics are serialized and published before adding a given metric to prevent metric truncation.

Example

Creates a few metrics and publish at the end of a function execution

from aws_lambda_powertools import Metrics

metrics = Metrics(namespace="ServerlessAirline", service="payment")

@metrics.log_metrics(capture_cold_start_metric=True)
def lambda_handler():
    metrics.add_metric(name="BookingConfirmation", unit="Count", value=1)
    metrics.add_dimension(name="function_version", value="$LATEST")

    return True

Environment Variables

POWERTOOLS_METRICS_NAMESPACE : str metric namespace POWERTOOLS_SERVICE_NAME : str service name used for default dimension

Parameters

service : str, optional
service name to be used as metric dimension, by default "service_undefined"
namespace : str
Namespace for metrics

Raises

MetricUnitError
When metric metric isn't supported by CloudWatch
MetricValueError
When metric value isn't a number
SchemaValidationError
When metric object fails EMF schema validation
Expand source code
class Metrics(MetricManager):
    """Metrics create an EMF object with up to 100 metrics

    Use Metrics when you need to create multiple metrics that have
    dimensions in common (e.g. service_name="payment").

    Metrics up to 100 metrics in memory and are shared across
    all its instances. That means it can be safely instantiated outside
    of a Lambda function, or anywhere else.

    A decorator (log_metrics) is provided so metrics are published at the end of its execution.
    If more than 100 metrics are added at a given function execution,
    these metrics are serialized and published before adding a given metric
    to prevent metric truncation.

    Example
    -------
    **Creates a few metrics and publish at the end of a function execution**

        from aws_lambda_powertools import Metrics

        metrics = Metrics(namespace="ServerlessAirline", service="payment")

        @metrics.log_metrics(capture_cold_start_metric=True)
        def lambda_handler():
            metrics.add_metric(name="BookingConfirmation", unit="Count", value=1)
            metrics.add_dimension(name="function_version", value="$LATEST")

            return True

    Environment variables
    ---------------------
    POWERTOOLS_METRICS_NAMESPACE : str
        metric namespace
    POWERTOOLS_SERVICE_NAME : str
        service name used for default dimension

    Parameters
    ----------
    service : str, optional
        service name to be used as metric dimension, by default "service_undefined"
    namespace : str
        Namespace for metrics

    Raises
    ------
    MetricUnitError
        When metric metric isn't supported by CloudWatch
    MetricValueError
        When metric value isn't a number
    SchemaValidationError
        When metric object fails EMF schema validation
    """

    _metrics: Dict[str, Any] = {}
    _dimensions: Dict[str, str] = {}
    _metadata: Dict[str, Any] = {}
    _default_dimensions: Dict[str, Any] = {}

    def __init__(self, service: Optional[str] = None, namespace: Optional[str] = None):
        self.metric_set = self._metrics
        self.service = service
        self.namespace: Optional[str] = namespace
        self.metadata_set = self._metadata
        self.default_dimensions = self._default_dimensions
        self.dimension_set = {**self._default_dimensions, **self._dimensions}

        super().__init__(
            metric_set=self.metric_set,
            dimension_set=self.dimension_set,
            namespace=self.namespace,
            metadata_set=self.metadata_set,
            service=self.service,
        )

    def set_default_dimensions(self, **dimensions) -> None:
        """Persist dimensions across Lambda invocations

        Parameters
        ----------
        dimensions : Dict[str, Any], optional
            metric dimensions as key=value

        Example
        -------
        **Sets some default dimensions that will always be present across metrics and invocations**

            from aws_lambda_powertools import Metrics

            metrics = Metrics(namespace="ServerlessAirline", service="payment")
            metrics.set_default_dimensions(environment="demo", another="one")

            @metrics.log_metrics()
            def lambda_handler():
                   return True
        """
        for name, value in dimensions.items():
            self.add_dimension(name, value)

        self.default_dimensions.update(**dimensions)

    def clear_default_dimensions(self) -> None:
        self.default_dimensions.clear()

    def clear_metrics(self) -> None:
        logger.debug("Clearing out existing metric set from memory")
        self.metric_set.clear()
        self.dimension_set.clear()
        self.metadata_set.clear()
        self.set_default_dimensions(**self.default_dimensions)  # re-add default dimensions

    def log_metrics(
        self,
        lambda_handler: Union[Callable[[Dict, Any], Any], Optional[Callable[[Dict, Any, Optional[Dict]], Any]]] = None,
        capture_cold_start_metric: bool = False,
        raise_on_empty_metrics: bool = False,
        default_dimensions: Optional[Dict[str, str]] = None,
    ) -> AnyCallableT:
        """Decorator to serialize and publish metrics at the end of a function execution.

        Be aware that the log_metrics **does call* the decorated function (e.g. lambda_handler).

        Example
        -------
        **Lambda function using tracer and metrics decorators**

            from aws_lambda_powertools import Metrics, Tracer

            metrics = Metrics(service="payment")
            tracer = Tracer(service="payment")

            @tracer.capture_lambda_handler
            @metrics.log_metrics
            def handler(event, context):
                    ...

        Parameters
        ----------
        lambda_handler : Callable[[Any, Any], Any], optional
            lambda function handler, by default None
        capture_cold_start_metric : bool, optional
            captures cold start metric, by default False
        raise_on_empty_metrics : bool, optional
            raise exception if no metrics are emitted, by default False
        default_dimensions: Dict[str, str], optional
            metric dimensions as key=value that will always be present

        Raises
        ------
        e
            Propagate error received
        """

        # If handler is None we've been called with parameters
        # Return a partial function with args filled
        if lambda_handler is None:
            logger.debug("Decorator called with parameters")
            return cast(
                AnyCallableT,
                functools.partial(
                    self.log_metrics,
                    capture_cold_start_metric=capture_cold_start_metric,
                    raise_on_empty_metrics=raise_on_empty_metrics,
                    default_dimensions=default_dimensions,
                ),
            )

        @functools.wraps(lambda_handler)
        def decorate(event, context):
            try:
                if default_dimensions:
                    self.set_default_dimensions(**default_dimensions)
                response = lambda_handler(event, context)
                if capture_cold_start_metric:
                    self.__add_cold_start_metric(context=context)
            finally:
                if not raise_on_empty_metrics and not self.metric_set:
                    warnings.warn("No metrics to publish, skipping")
                else:
                    metrics = self.serialize_metric_set()
                    self.clear_metrics()
                    print(json.dumps(metrics, separators=(",", ":")))

            return response

        return cast(AnyCallableT, decorate)

    def __add_cold_start_metric(self, context: Any) -> None:
        """Add cold start metric and function_name dimension

        Parameters
        ----------
        context : Any
            Lambda context
        """
        global is_cold_start
        if is_cold_start:
            logger.debug("Adding cold start metric and function_name dimension")
            with single_metric(name="ColdStart", unit=MetricUnit.Count, value=1, namespace=self.namespace) as metric:
                metric.add_dimension(name="function_name", value=context.function_name)
                metric.add_dimension(name="service", value=self.service)
                is_cold_start = False

Ancestors

Methods

def clear_default_dimensions(self) ‑> None
Expand source code
def clear_default_dimensions(self) -> None:
    self.default_dimensions.clear()
def clear_metrics(self) ‑> None
Expand source code
def clear_metrics(self) -> None:
    logger.debug("Clearing out existing metric set from memory")
    self.metric_set.clear()
    self.dimension_set.clear()
    self.metadata_set.clear()
    self.set_default_dimensions(**self.default_dimensions)  # re-add default dimensions
def log_metrics(self, lambda_handler: Union[Callable[[Dict[~KT, ~VT], Any], Any], Callable[[Dict[~KT, ~VT], Any, Optional[Dict[~KT, ~VT]]], Any], None] = None, capture_cold_start_metric: bool = False, raise_on_empty_metrics: bool = False, default_dimensions: Optional[Dict[str, str]] = None) ‑> ~AnyCallableT

Decorator to serialize and publish metrics at the end of a function execution.

Be aware that the log_metrics *does call the decorated function (e.g. lambda_handler).

Example

Lambda function using tracer and metrics decorators

from aws_lambda_powertools import Metrics, Tracer

metrics = Metrics(service="payment")
tracer = Tracer(service="payment")

@tracer.capture_lambda_handler
@metrics.log_metrics
def handler(event, context):
        ...

Parameters

lambda_handler : Callable[[Any, Any], Any], optional
lambda function handler, by default None
capture_cold_start_metric : bool, optional
captures cold start metric, by default False
raise_on_empty_metrics : bool, optional
raise exception if no metrics are emitted, by default False
default_dimensions : Dict[str, str], optional
metric dimensions as key=value that will always be present

Raises

e
Propagate error received
Expand source code
def log_metrics(
    self,
    lambda_handler: Union[Callable[[Dict, Any], Any], Optional[Callable[[Dict, Any, Optional[Dict]], Any]]] = None,
    capture_cold_start_metric: bool = False,
    raise_on_empty_metrics: bool = False,
    default_dimensions: Optional[Dict[str, str]] = None,
) -> AnyCallableT:
    """Decorator to serialize and publish metrics at the end of a function execution.

    Be aware that the log_metrics **does call* the decorated function (e.g. lambda_handler).

    Example
    -------
    **Lambda function using tracer and metrics decorators**

        from aws_lambda_powertools import Metrics, Tracer

        metrics = Metrics(service="payment")
        tracer = Tracer(service="payment")

        @tracer.capture_lambda_handler
        @metrics.log_metrics
        def handler(event, context):
                ...

    Parameters
    ----------
    lambda_handler : Callable[[Any, Any], Any], optional
        lambda function handler, by default None
    capture_cold_start_metric : bool, optional
        captures cold start metric, by default False
    raise_on_empty_metrics : bool, optional
        raise exception if no metrics are emitted, by default False
    default_dimensions: Dict[str, str], optional
        metric dimensions as key=value that will always be present

    Raises
    ------
    e
        Propagate error received
    """

    # If handler is None we've been called with parameters
    # Return a partial function with args filled
    if lambda_handler is None:
        logger.debug("Decorator called with parameters")
        return cast(
            AnyCallableT,
            functools.partial(
                self.log_metrics,
                capture_cold_start_metric=capture_cold_start_metric,
                raise_on_empty_metrics=raise_on_empty_metrics,
                default_dimensions=default_dimensions,
            ),
        )

    @functools.wraps(lambda_handler)
    def decorate(event, context):
        try:
            if default_dimensions:
                self.set_default_dimensions(**default_dimensions)
            response = lambda_handler(event, context)
            if capture_cold_start_metric:
                self.__add_cold_start_metric(context=context)
        finally:
            if not raise_on_empty_metrics and not self.metric_set:
                warnings.warn("No metrics to publish, skipping")
            else:
                metrics = self.serialize_metric_set()
                self.clear_metrics()
                print(json.dumps(metrics, separators=(",", ":")))

        return response

    return cast(AnyCallableT, decorate)
def set_default_dimensions(self, **dimensions) ‑> None

Persist dimensions across Lambda invocations

Parameters

dimensions : Dict[str, Any], optional
metric dimensions as key=value

Example

Sets some default dimensions that will always be present across metrics and invocations

from aws_lambda_powertools import Metrics

metrics = Metrics(namespace="ServerlessAirline", service="payment")
metrics.set_default_dimensions(environment="demo", another="one")

@metrics.log_metrics()
def lambda_handler():
       return True
Expand source code
def set_default_dimensions(self, **dimensions) -> None:
    """Persist dimensions across Lambda invocations

    Parameters
    ----------
    dimensions : Dict[str, Any], optional
        metric dimensions as key=value

    Example
    -------
    **Sets some default dimensions that will always be present across metrics and invocations**

        from aws_lambda_powertools import Metrics

        metrics = Metrics(namespace="ServerlessAirline", service="payment")
        metrics.set_default_dimensions(environment="demo", another="one")

        @metrics.log_metrics()
        def lambda_handler():
               return True
    """
    for name, value in dimensions.items():
        self.add_dimension(name, value)

    self.default_dimensions.update(**dimensions)

Inherited members