Module aws_lambda_powertools.metrics
CloudWatch Embedded Metric Format utility
Expand source code
"""CloudWatch Embedded Metric Format utility
"""
from aws_lambda_powertools.metrics.base import MetricResolution, MetricUnit, single_metric
from aws_lambda_powertools.metrics.exceptions import (
MetricResolutionError,
MetricUnitError,
MetricValueError,
SchemaValidationError,
)
from aws_lambda_powertools.metrics.metrics import EphemeralMetrics, Metrics
__all__ = [
"single_metric",
"MetricUnitError",
"MetricResolutionError",
"SchemaValidationError",
"MetricValueError",
"Metrics",
"EphemeralMetrics",
"MetricResolution",
"MetricUnit",
]
Sub-modules
aws_lambda_powertools.metrics.base
aws_lambda_powertools.metrics.exceptions
aws_lambda_powertools.metrics.functions
aws_lambda_powertools.metrics.metric
aws_lambda_powertools.metrics.metrics
aws_lambda_powertools.metrics.provider
aws_lambda_powertools.metrics.types
Functions
def single_metric(name: str, unit: MetricUnit, value: float, resolution: MetricResolution | int = 60, namespace: str | None = None, default_dimensions: Dict[str, str] | None = None) ‑> Generator[SingleMetric, None, None]
-
Context manager to simplify creation of a single metric
Example
Creates cold start metric with function_version as dimension
from aws_lambda_powertools import single_metric from aws_lambda_powertools.metrics import MetricUnit from aws_lambda_powertools.metrics import MetricResolution with single_metric(name="ColdStart", unit=MetricUnit.Count, value=1, resolution=MetricResolution.Standard, namespace="ServerlessAirline") as metric: metric.add_dimension(name="function_version", value="47")
Same as above but set namespace using environment variable
$ export POWERTOOLS_METRICS_NAMESPACE="ServerlessAirline" from aws_lambda_powertools import single_metric from aws_lambda_powertools.metrics import MetricUnit from aws_lambda_powertools.metrics import MetricResolution with single_metric(name="ColdStart", unit=MetricUnit.Count, value=1, resolution=MetricResolution.Standard) as metric: metric.add_dimension(name="function_version", value="47")
Parameters
name
:str
- Metric name
unit
:MetricUnit
aws_lambda_powertools.helper.models.MetricUnit
resolution
:MetricResolution
aws_lambda_powertools.helper.models.MetricResolution
value
:float
- Metric value
namespace
:str
- Namespace for metrics
Yields
SingleMetric
- SingleMetric class instance
Raises
MetricUnitError
- When metric metric isn't supported by CloudWatch
MetricResolutionError
- When metric resolution isn't supported by CloudWatch
MetricValueError
- When metric value isn't a number
SchemaValidationError
- When metric object fails EMF schema validation
Expand source code
@contextmanager def single_metric( name: str, unit: MetricUnit, value: float, resolution: MetricResolution | int = 60, namespace: str | None = None, default_dimensions: Dict[str, str] | None = None, ) -> Generator[SingleMetric, None, None]: """Context manager to simplify creation of a single metric Example ------- **Creates cold start metric with function_version as dimension** from aws_lambda_powertools import single_metric from aws_lambda_powertools.metrics import MetricUnit from aws_lambda_powertools.metrics import MetricResolution with single_metric(name="ColdStart", unit=MetricUnit.Count, value=1, resolution=MetricResolution.Standard, namespace="ServerlessAirline") as metric: metric.add_dimension(name="function_version", value="47") **Same as above but set namespace using environment variable** $ export POWERTOOLS_METRICS_NAMESPACE="ServerlessAirline" from aws_lambda_powertools import single_metric from aws_lambda_powertools.metrics import MetricUnit from aws_lambda_powertools.metrics import MetricResolution with single_metric(name="ColdStart", unit=MetricUnit.Count, value=1, resolution=MetricResolution.Standard) as metric: metric.add_dimension(name="function_version", value="47") Parameters ---------- name : str Metric name unit : MetricUnit `aws_lambda_powertools.helper.models.MetricUnit` resolution : MetricResolution `aws_lambda_powertools.helper.models.MetricResolution` value : float Metric value namespace: str Namespace for metrics Yields ------- SingleMetric SingleMetric class instance Raises ------ MetricUnitError When metric metric isn't supported by CloudWatch MetricResolutionError When metric resolution isn't supported by CloudWatch MetricValueError When metric value isn't a number SchemaValidationError When metric object fails EMF schema validation """ # noqa: E501 metric_set: Dict | None = None try: metric: SingleMetric = SingleMetric(namespace=namespace) metric.add_metric(name=name, unit=unit, value=value, resolution=resolution) if default_dimensions: for dim_name, dim_value in default_dimensions.items(): metric.add_dimension(name=dim_name, value=dim_value) yield metric metric_set = metric.serialize_metric_set() finally: print(json.dumps(metric_set, separators=(",", ":")))
Classes
class EphemeralMetrics (metric_set: Dict[str, Any] | None = None, dimension_set: Dict | None = None, namespace: str | None = None, metadata_set: Dict[str, Any] | None = None, service: str | None = None, default_dimensions: Dict[str, Any] | None = None)
-
AmazonCloudWatchEMFProvider creates metrics asynchronously via CloudWatch Embedded Metric Format (EMF).
CloudWatch EMF can create up to 100 metrics per EMF object and metrics, dimensions, and namespace created via AmazonCloudWatchEMFProvider will adhere to the schema, will be serialized and validated against EMF Schema.
Use
Metrics
orsingle_metric()
to create EMF metrics.Environment Variables
POWERTOOLS_METRICS_NAMESPACE : str metric namespace to be set for all metrics POWERTOOLS_SERVICE_NAME : str service name used for default dimension
Raises
MetricUnitError
- When metric unit isn't supported by CloudWatch
MetricResolutionError
- When metric resolution isn't supported by CloudWatch
MetricValueError
- When metric value isn't a number
SchemaValidationError
- When metric object fails EMF schema validation
Expand source code
class AmazonCloudWatchEMFProvider(BaseProvider): """ AmazonCloudWatchEMFProvider creates metrics asynchronously via CloudWatch Embedded Metric Format (EMF). CloudWatch EMF can create up to 100 metrics per EMF object and metrics, dimensions, and namespace created via AmazonCloudWatchEMFProvider will adhere to the schema, will be serialized and validated against EMF Schema. **Use `aws_lambda_powertools.Metrics` or `aws_lambda_powertools.single_metric` to create EMF metrics.** Environment variables --------------------- POWERTOOLS_METRICS_NAMESPACE : str metric namespace to be set for all metrics POWERTOOLS_SERVICE_NAME : str service name used for default dimension Raises ------ MetricUnitError When metric unit isn't supported by CloudWatch MetricResolutionError When metric resolution isn't supported by CloudWatch MetricValueError When metric value isn't a number SchemaValidationError When metric object fails EMF schema validation """ def __init__( self, metric_set: Dict[str, Any] | None = None, dimension_set: Dict | None = None, namespace: str | None = None, metadata_set: Dict[str, Any] | None = None, service: str | None = None, default_dimensions: Dict[str, Any] | None = None, ): self.metric_set = metric_set if metric_set is not None else {} self.dimension_set = dimension_set if dimension_set is not None else {} self.default_dimensions = default_dimensions or {} self.namespace = resolve_env_var_choice(choice=namespace, env=os.getenv(constants.METRICS_NAMESPACE_ENV)) self.service = resolve_env_var_choice(choice=service, env=os.getenv(constants.SERVICE_NAME_ENV)) self.metadata_set = metadata_set if metadata_set is not None else {} self._metric_units = [unit.value for unit in MetricUnit] self._metric_unit_valid_options = list(MetricUnit.__members__) self._metric_resolutions = [resolution.value for resolution in MetricResolution] self.dimension_set.update(**self.default_dimensions) def add_metric( self, name: str, unit: MetricUnit | str, value: float, resolution: MetricResolution | int = 60, ) -> None: """Adds given metric Example ------- **Add given metric using MetricUnit enum** metric.add_metric(name="BookingConfirmation", unit=MetricUnit.Count, value=1) **Add given metric using plain string as value unit** metric.add_metric(name="BookingConfirmation", unit="Count", value=1) **Add given metric with MetricResolution non default value** metric.add_metric(name="BookingConfirmation", unit="Count", value=1, resolution=MetricResolution.High) Parameters ---------- name : str Metric name unit : Union[MetricUnit, str] `aws_lambda_powertools.helper.models.MetricUnit` value : float Metric value resolution : Union[MetricResolution, int] `aws_lambda_powertools.helper.models.MetricResolution` Raises ------ MetricUnitError When metric unit is not supported by CloudWatch MetricResolutionError When metric resolution is not supported by CloudWatch """ if not isinstance(value, numbers.Number): raise MetricValueError(f"{value} is not a valid number") unit = extract_cloudwatch_metric_unit_value( metric_units=self._metric_units, metric_valid_options=self._metric_unit_valid_options, unit=unit, ) resolution = extract_cloudwatch_metric_resolution_value( metric_resolutions=self._metric_resolutions, resolution=resolution, ) metric: Dict = self.metric_set.get(name, defaultdict(list)) metric["Unit"] = unit metric["StorageResolution"] = resolution metric["Value"].append(float(value)) logger.debug(f"Adding metric: {name} with {metric}") self.metric_set[name] = metric if len(self.metric_set) == MAX_METRICS or len(metric["Value"]) == MAX_METRICS: logger.debug(f"Exceeded maximum of {MAX_METRICS} metrics - Publishing existing metric set") metrics = self.serialize_metric_set() print(json.dumps(metrics)) # clear metric set only as opposed to metrics and dimensions set # since we could have more than 100 metrics self.metric_set.clear() def serialize_metric_set( self, metrics: Dict | None = None, dimensions: Dict | None = None, metadata: Dict | None = None, ) -> CloudWatchEMFOutput: """Serializes metric and dimensions set Parameters ---------- metrics : Dict, optional Dictionary of metrics to serialize, by default None dimensions : Dict, optional Dictionary of dimensions to serialize, by default None metadata: Dict, optional Dictionary of metadata to serialize, by default None Example ------- **Serialize metrics into EMF format** metrics = MetricManager() # ...add metrics, dimensions, namespace ret = metrics.serialize_metric_set() Returns ------- Dict Serialized metrics following EMF specification Raises ------ SchemaValidationError Raised when serialization fail schema validation """ if metrics is None: # pragma: no cover metrics = self.metric_set if dimensions is None: # pragma: no cover dimensions = self.dimension_set if metadata is None: # pragma: no cover metadata = self.metadata_set if self.service and not self.dimension_set.get("service"): # self.service won't be a float self.add_dimension(name="service", value=self.service) if len(metrics) == 0: raise SchemaValidationError("Must contain at least one metric.") if self.namespace is None: raise SchemaValidationError("Must contain a metric namespace.") logger.debug({"details": "Serializing metrics", "metrics": metrics, "dimensions": dimensions}) # For standard resolution metrics, don't add StorageResolution field to avoid unnecessary ingestion of data into cloudwatch # noqa E501 # Example: [ { "Name": "metric_name", "Unit": "Count"} ] # noqa ERA001 # # In case using high-resolution metrics, add StorageResolution field # Example: [ { "Name": "metric_name", "Unit": "Count", "StorageResolution": 1 } ] # noqa ERA001 metric_definition: List[MetricNameUnitResolution] = [] metric_names_and_values: Dict[str, float] = {} # { "metric_name": 1.0 } for metric_name in metrics: metric: dict = metrics[metric_name] metric_value: int = metric.get("Value", 0) metric_unit: str = metric.get("Unit", "") metric_resolution: int = metric.get("StorageResolution", 60) metric_definition_data: MetricNameUnitResolution = {"Name": metric_name, "Unit": metric_unit} # high-resolution metrics if metric_resolution == 1: metric_definition_data["StorageResolution"] = metric_resolution metric_definition.append(metric_definition_data) metric_names_and_values.update({metric_name: metric_value}) return { "_aws": { "Timestamp": int(datetime.datetime.now().timestamp() * 1000), # epoch "CloudWatchMetrics": [ { "Namespace": self.namespace, # "test_namespace" "Dimensions": [list(dimensions.keys())], # [ "service" ] "Metrics": metric_definition, }, ], }, # NOTE: Mypy doesn't recognize splats '** syntax' in TypedDict **dimensions, # type: ignore[misc] # "service": "test_service" **metadata, # "username": "test" **metric_names_and_values, # "single_metric": 1.0 } def add_dimension(self, name: str, value: str) -> None: """Adds given dimension to all metrics Example ------- **Add a metric dimensions** metric.add_dimension(name="operation", value="confirm_booking") Parameters ---------- name : str Dimension name value : str Dimension value """ logger.debug(f"Adding dimension: {name}:{value}") if len(self.dimension_set) == MAX_DIMENSIONS: raise SchemaValidationError( f"Maximum number of dimensions exceeded ({MAX_DIMENSIONS}): Unable to add dimension {name}.", ) # Cast value to str according to EMF spec # Majority of values are expected to be string already, so # checking before casting improves performance in most cases self.dimension_set[name] = value if isinstance(value, str) else str(value) def add_metadata(self, key: str, value: Any) -> None: """Adds high cardinal metadata for metrics object This will not be available during metrics visualization. Instead, this will be searchable through logs. If you're looking to add metadata to filter metrics, then use add_dimensions method. Example ------- **Add metrics metadata** metric.add_metadata(key="booking_id", value="booking_id") Parameters ---------- key : str Metadata key value : any Metadata value """ logger.debug(f"Adding metadata: {key}:{value}") # Cast key to str according to EMF spec # Majority of keys are expected to be string already, so # checking before casting improves performance in most cases if isinstance(key, str): self.metadata_set[key] = value else: self.metadata_set[str(key)] = value def clear_metrics(self) -> None: logger.debug("Clearing out existing metric set from memory") self.metric_set.clear() self.dimension_set.clear() self.metadata_set.clear() self.set_default_dimensions(**self.default_dimensions) def flush_metrics(self, raise_on_empty_metrics: bool = False) -> None: """Manually flushes the metrics. This is normally not necessary, unless you're running on other runtimes besides Lambda, where the @log_metrics decorator already handles things for you. Parameters ---------- raise_on_empty_metrics : bool, optional raise exception if no metrics are emitted, by default False """ if not raise_on_empty_metrics and not self.metric_set: warnings.warn( "No application metrics to publish. The cold-start metric may be published if enabled. " "If application metrics should never be empty, consider using 'raise_on_empty_metrics'", stacklevel=2, ) else: logger.debug("Flushing existing metrics") metrics = self.serialize_metric_set() print(json.dumps(metrics, separators=(",", ":"))) self.clear_metrics() def log_metrics( self, lambda_handler: Callable[[Dict, Any], Any] | Optional[Callable[[Dict, Any, Optional[Dict]], Any]] = None, capture_cold_start_metric: bool = False, raise_on_empty_metrics: bool = False, **kwargs, ): """Decorator to serialize and publish metrics at the end of a function execution. Be aware that the log_metrics **does call* the decorated function (e.g. lambda_handler). Example ------- **Lambda function using tracer and metrics decorators** from aws_lambda_powertools import Metrics, Tracer metrics = Metrics(service="payment") tracer = Tracer(service="payment") @tracer.capture_lambda_handler @metrics.log_metrics def handler(event, context): ... Parameters ---------- lambda_handler : Callable[[Any, Any], Any], optional lambda function handler, by default None capture_cold_start_metric : bool, optional captures cold start metric, by default False raise_on_empty_metrics : bool, optional raise exception if no metrics are emitted, by default False **kwargs Raises ------ e Propagate error received """ default_dimensions = kwargs.get("default_dimensions") if default_dimensions: self.set_default_dimensions(**default_dimensions) return super().log_metrics( lambda_handler=lambda_handler, capture_cold_start_metric=capture_cold_start_metric, raise_on_empty_metrics=raise_on_empty_metrics, **kwargs, ) def add_cold_start_metric(self, context: LambdaContext) -> None: """Add cold start metric and function_name dimension Parameters ---------- context : Any Lambda context """ logger.debug("Adding cold start metric and function_name dimension") with single_metric(name="ColdStart", unit=MetricUnit.Count, value=1, namespace=self.namespace) as metric: metric.add_dimension(name="function_name", value=context.function_name) if self.service: metric.add_dimension(name="service", value=str(self.service)) def set_default_dimensions(self, **dimensions) -> None: """Persist dimensions across Lambda invocations Parameters ---------- dimensions : Dict[str, Any], optional metric dimensions as key=value Example ------- **Sets some default dimensions that will always be present across metrics and invocations** from aws_lambda_powertools import Metrics metrics = Metrics(namespace="ServerlessAirline", service="payment") metrics.set_default_dimensions(environment="demo", another="one") @metrics.log_metrics() def lambda_handler(): return True """ for name, value in dimensions.items(): self.add_dimension(name, value) self.default_dimensions.update(**dimensions)
Ancestors
- BaseProvider
- abc.ABC
Methods
def add_cold_start_metric(self, context: LambdaContext) ‑> None
-
Add cold start metric and function_name dimension
Parameters
context
:Any
- Lambda context
Expand source code
def add_cold_start_metric(self, context: LambdaContext) -> None: """Add cold start metric and function_name dimension Parameters ---------- context : Any Lambda context """ logger.debug("Adding cold start metric and function_name dimension") with single_metric(name="ColdStart", unit=MetricUnit.Count, value=1, namespace=self.namespace) as metric: metric.add_dimension(name="function_name", value=context.function_name) if self.service: metric.add_dimension(name="service", value=str(self.service))
def add_dimension(self, name: str, value: str) ‑> None
-
Adds given dimension to all metrics
Example
Add a metric dimensions
metric.add_dimension(name="operation", value="confirm_booking")
Parameters
name
:str
- Dimension name
value
:str
- Dimension value
Expand source code
def add_dimension(self, name: str, value: str) -> None: """Adds given dimension to all metrics Example ------- **Add a metric dimensions** metric.add_dimension(name="operation", value="confirm_booking") Parameters ---------- name : str Dimension name value : str Dimension value """ logger.debug(f"Adding dimension: {name}:{value}") if len(self.dimension_set) == MAX_DIMENSIONS: raise SchemaValidationError( f"Maximum number of dimensions exceeded ({MAX_DIMENSIONS}): Unable to add dimension {name}.", ) # Cast value to str according to EMF spec # Majority of values are expected to be string already, so # checking before casting improves performance in most cases self.dimension_set[name] = value if isinstance(value, str) else str(value)
def add_metadata(self, key: str, value: Any) ‑> None
-
Adds high cardinal metadata for metrics object
This will not be available during metrics visualization. Instead, this will be searchable through logs.
If you're looking to add metadata to filter metrics, then use add_dimensions method.
Example
Add metrics metadata
metric.add_metadata(key="booking_id", value="booking_id")
Parameters
key
:str
- Metadata key
value
:any
- Metadata value
Expand source code
def add_metadata(self, key: str, value: Any) -> None: """Adds high cardinal metadata for metrics object This will not be available during metrics visualization. Instead, this will be searchable through logs. If you're looking to add metadata to filter metrics, then use add_dimensions method. Example ------- **Add metrics metadata** metric.add_metadata(key="booking_id", value="booking_id") Parameters ---------- key : str Metadata key value : any Metadata value """ logger.debug(f"Adding metadata: {key}:{value}") # Cast key to str according to EMF spec # Majority of keys are expected to be string already, so # checking before casting improves performance in most cases if isinstance(key, str): self.metadata_set[key] = value else: self.metadata_set[str(key)] = value
def add_metric(self, name: str, unit: MetricUnit | str, value: float, resolution: MetricResolution | int = 60) ‑> None
-
Adds given metric
Example
Add given metric using MetricUnit enum
metric.add_metric(name="BookingConfirmation", unit=MetricUnit.Count, value=1)
Add given metric using plain string as value unit
metric.add_metric(name="BookingConfirmation", unit="Count", value=1)
Add given metric with MetricResolution non default value
metric.add_metric(name="BookingConfirmation", unit="Count", value=1, resolution=MetricResolution.High)
Parameters
name
:str
- Metric name
unit
:Union[MetricUnit, str]
aws_lambda_powertools.helper.models.MetricUnit
value
:float
- Metric value
resolution
:Union[MetricResolution, int]
aws_lambda_powertools.helper.models.MetricResolution
Raises
MetricUnitError
- When metric unit is not supported by CloudWatch
MetricResolutionError
- When metric resolution is not supported by CloudWatch
Expand source code
def add_metric( self, name: str, unit: MetricUnit | str, value: float, resolution: MetricResolution | int = 60, ) -> None: """Adds given metric Example ------- **Add given metric using MetricUnit enum** metric.add_metric(name="BookingConfirmation", unit=MetricUnit.Count, value=1) **Add given metric using plain string as value unit** metric.add_metric(name="BookingConfirmation", unit="Count", value=1) **Add given metric with MetricResolution non default value** metric.add_metric(name="BookingConfirmation", unit="Count", value=1, resolution=MetricResolution.High) Parameters ---------- name : str Metric name unit : Union[MetricUnit, str] `aws_lambda_powertools.helper.models.MetricUnit` value : float Metric value resolution : Union[MetricResolution, int] `aws_lambda_powertools.helper.models.MetricResolution` Raises ------ MetricUnitError When metric unit is not supported by CloudWatch MetricResolutionError When metric resolution is not supported by CloudWatch """ if not isinstance(value, numbers.Number): raise MetricValueError(f"{value} is not a valid number") unit = extract_cloudwatch_metric_unit_value( metric_units=self._metric_units, metric_valid_options=self._metric_unit_valid_options, unit=unit, ) resolution = extract_cloudwatch_metric_resolution_value( metric_resolutions=self._metric_resolutions, resolution=resolution, ) metric: Dict = self.metric_set.get(name, defaultdict(list)) metric["Unit"] = unit metric["StorageResolution"] = resolution metric["Value"].append(float(value)) logger.debug(f"Adding metric: {name} with {metric}") self.metric_set[name] = metric if len(self.metric_set) == MAX_METRICS or len(metric["Value"]) == MAX_METRICS: logger.debug(f"Exceeded maximum of {MAX_METRICS} metrics - Publishing existing metric set") metrics = self.serialize_metric_set() print(json.dumps(metrics)) # clear metric set only as opposed to metrics and dimensions set # since we could have more than 100 metrics self.metric_set.clear()
def flush_metrics(self, raise_on_empty_metrics: bool = False) ‑> None
-
Manually flushes the metrics. This is normally not necessary, unless you're running on other runtimes besides Lambda, where the @log_metrics decorator already handles things for you.
Parameters
raise_on_empty_metrics
:bool
, optional- raise exception if no metrics are emitted, by default False
Expand source code
def flush_metrics(self, raise_on_empty_metrics: bool = False) -> None: """Manually flushes the metrics. This is normally not necessary, unless you're running on other runtimes besides Lambda, where the @log_metrics decorator already handles things for you. Parameters ---------- raise_on_empty_metrics : bool, optional raise exception if no metrics are emitted, by default False """ if not raise_on_empty_metrics and not self.metric_set: warnings.warn( "No application metrics to publish. The cold-start metric may be published if enabled. " "If application metrics should never be empty, consider using 'raise_on_empty_metrics'", stacklevel=2, ) else: logger.debug("Flushing existing metrics") metrics = self.serialize_metric_set() print(json.dumps(metrics, separators=(",", ":"))) self.clear_metrics()
def log_metrics(self, lambda_handler: Callable[[Dict, Any], Any] | Optional[Callable[[Dict, Any, Optional[Dict]], Any]] = None, capture_cold_start_metric: bool = False, raise_on_empty_metrics: bool = False, **kwargs)
-
Decorator to serialize and publish metrics at the end of a function execution.
Be aware that the log_metrics *does call the decorated function (e.g. lambda_handler).
Example
Lambda function using tracer and metrics decorators
from aws_lambda_powertools import Metrics, Tracer metrics = Metrics(service="payment") tracer = Tracer(service="payment") @tracer.capture_lambda_handler @metrics.log_metrics def handler(event, context): ...
Parameters
lambda_handler
:Callable[[Any, Any], Any]
, optional- lambda function handler, by default None
capture_cold_start_metric
:bool
, optional- captures cold start metric, by default False
raise_on_empty_metrics
:bool
, optional- raise exception if no metrics are emitted, by default False
**kwargs
Raises
e
- Propagate error received
Expand source code
def log_metrics( self, lambda_handler: Callable[[Dict, Any], Any] | Optional[Callable[[Dict, Any, Optional[Dict]], Any]] = None, capture_cold_start_metric: bool = False, raise_on_empty_metrics: bool = False, **kwargs, ): """Decorator to serialize and publish metrics at the end of a function execution. Be aware that the log_metrics **does call* the decorated function (e.g. lambda_handler). Example ------- **Lambda function using tracer and metrics decorators** from aws_lambda_powertools import Metrics, Tracer metrics = Metrics(service="payment") tracer = Tracer(service="payment") @tracer.capture_lambda_handler @metrics.log_metrics def handler(event, context): ... Parameters ---------- lambda_handler : Callable[[Any, Any], Any], optional lambda function handler, by default None capture_cold_start_metric : bool, optional captures cold start metric, by default False raise_on_empty_metrics : bool, optional raise exception if no metrics are emitted, by default False **kwargs Raises ------ e Propagate error received """ default_dimensions = kwargs.get("default_dimensions") if default_dimensions: self.set_default_dimensions(**default_dimensions) return super().log_metrics( lambda_handler=lambda_handler, capture_cold_start_metric=capture_cold_start_metric, raise_on_empty_metrics=raise_on_empty_metrics, **kwargs, )
def serialize_metric_set(self, metrics: Dict | None = None, dimensions: Dict | None = None, metadata: Dict | None = None) ‑> CloudWatchEMFOutput
-
Serializes metric and dimensions set
Parameters
metrics
:Dict
, optional- Dictionary of metrics to serialize, by default None
dimensions
:Dict
, optional- Dictionary of dimensions to serialize, by default None
metadata
:Dict
, optional- Dictionary of metadata to serialize, by default None
Example
Serialize metrics into EMF format
metrics = MetricManager() # ...add metrics, dimensions, namespace ret = metrics.serialize_metric_set()
Returns
Dict
- Serialized metrics following EMF specification
Raises
SchemaValidationError
- Raised when serialization fail schema validation
Expand source code
def serialize_metric_set( self, metrics: Dict | None = None, dimensions: Dict | None = None, metadata: Dict | None = None, ) -> CloudWatchEMFOutput: """Serializes metric and dimensions set Parameters ---------- metrics : Dict, optional Dictionary of metrics to serialize, by default None dimensions : Dict, optional Dictionary of dimensions to serialize, by default None metadata: Dict, optional Dictionary of metadata to serialize, by default None Example ------- **Serialize metrics into EMF format** metrics = MetricManager() # ...add metrics, dimensions, namespace ret = metrics.serialize_metric_set() Returns ------- Dict Serialized metrics following EMF specification Raises ------ SchemaValidationError Raised when serialization fail schema validation """ if metrics is None: # pragma: no cover metrics = self.metric_set if dimensions is None: # pragma: no cover dimensions = self.dimension_set if metadata is None: # pragma: no cover metadata = self.metadata_set if self.service and not self.dimension_set.get("service"): # self.service won't be a float self.add_dimension(name="service", value=self.service) if len(metrics) == 0: raise SchemaValidationError("Must contain at least one metric.") if self.namespace is None: raise SchemaValidationError("Must contain a metric namespace.") logger.debug({"details": "Serializing metrics", "metrics": metrics, "dimensions": dimensions}) # For standard resolution metrics, don't add StorageResolution field to avoid unnecessary ingestion of data into cloudwatch # noqa E501 # Example: [ { "Name": "metric_name", "Unit": "Count"} ] # noqa ERA001 # # In case using high-resolution metrics, add StorageResolution field # Example: [ { "Name": "metric_name", "Unit": "Count", "StorageResolution": 1 } ] # noqa ERA001 metric_definition: List[MetricNameUnitResolution] = [] metric_names_and_values: Dict[str, float] = {} # { "metric_name": 1.0 } for metric_name in metrics: metric: dict = metrics[metric_name] metric_value: int = metric.get("Value", 0) metric_unit: str = metric.get("Unit", "") metric_resolution: int = metric.get("StorageResolution", 60) metric_definition_data: MetricNameUnitResolution = {"Name": metric_name, "Unit": metric_unit} # high-resolution metrics if metric_resolution == 1: metric_definition_data["StorageResolution"] = metric_resolution metric_definition.append(metric_definition_data) metric_names_and_values.update({metric_name: metric_value}) return { "_aws": { "Timestamp": int(datetime.datetime.now().timestamp() * 1000), # epoch "CloudWatchMetrics": [ { "Namespace": self.namespace, # "test_namespace" "Dimensions": [list(dimensions.keys())], # [ "service" ] "Metrics": metric_definition, }, ], }, # NOTE: Mypy doesn't recognize splats '** syntax' in TypedDict **dimensions, # type: ignore[misc] # "service": "test_service" **metadata, # "username": "test" **metric_names_and_values, # "single_metric": 1.0 }
def set_default_dimensions(self, **dimensions) ‑> None
-
Persist dimensions across Lambda invocations
Parameters
dimensions
:Dict[str, Any]
, optional- metric dimensions as key=value
Example
Sets some default dimensions that will always be present across metrics and invocations
from aws_lambda_powertools import Metrics metrics = Metrics(namespace="ServerlessAirline", service="payment") metrics.set_default_dimensions(environment="demo", another="one") @metrics.log_metrics() def lambda_handler(): return True
Expand source code
def set_default_dimensions(self, **dimensions) -> None: """Persist dimensions across Lambda invocations Parameters ---------- dimensions : Dict[str, Any], optional metric dimensions as key=value Example ------- **Sets some default dimensions that will always be present across metrics and invocations** from aws_lambda_powertools import Metrics metrics = Metrics(namespace="ServerlessAirline", service="payment") metrics.set_default_dimensions(environment="demo", another="one") @metrics.log_metrics() def lambda_handler(): return True """ for name, value in dimensions.items(): self.add_dimension(name, value) self.default_dimensions.update(**dimensions)
Inherited members
class MetricResolution (*args, **kwds)
-
Create a collection of name/value pairs.
Example enumeration:
>>> class Color(Enum): ... RED = 1 ... BLUE = 2 ... GREEN = 3
Access them by:
- attribute access::
>>> Color.RED <Color.RED: 1>
- value lookup:
>>> Color(1) <Color.RED: 1>
- name lookup:
>>> Color['RED'] <Color.RED: 1>
Enumerations can be iterated over, and know how many members they have:
>>> len(Color) 3
>>> list(Color) [<Color.RED: 1>, <Color.BLUE: 2>, <Color.GREEN: 3>]
Methods can be added to enumerations, and members can have their own attributes – see the documentation for details.
Expand source code
class MetricResolution(Enum): Standard = 60 High = 1
Ancestors
- enum.Enum
Class variables
var High
var Standard
class MetricResolutionError (*args, **kwargs)
-
When metric resolution is not supported by CloudWatch
Expand source code
class MetricResolutionError(Exception): """When metric resolution is not supported by CloudWatch""" pass
Ancestors
- builtins.Exception
- builtins.BaseException
class MetricUnit (*args, **kwds)
-
Create a collection of name/value pairs.
Example enumeration:
>>> class Color(Enum): ... RED = 1 ... BLUE = 2 ... GREEN = 3
Access them by:
- attribute access::
>>> Color.RED <Color.RED: 1>
- value lookup:
>>> Color(1) <Color.RED: 1>
- name lookup:
>>> Color['RED'] <Color.RED: 1>
Enumerations can be iterated over, and know how many members they have:
>>> len(Color) 3
>>> list(Color) [<Color.RED: 1>, <Color.BLUE: 2>, <Color.GREEN: 3>]
Methods can be added to enumerations, and members can have their own attributes – see the documentation for details.
Expand source code
class MetricUnit(Enum): Seconds = "Seconds" Microseconds = "Microseconds" Milliseconds = "Milliseconds" Bytes = "Bytes" Kilobytes = "Kilobytes" Megabytes = "Megabytes" Gigabytes = "Gigabytes" Terabytes = "Terabytes" Bits = "Bits" Kilobits = "Kilobits" Megabits = "Megabits" Gigabits = "Gigabits" Terabits = "Terabits" Percent = "Percent" Count = "Count" BytesPerSecond = "Bytes/Second" KilobytesPerSecond = "Kilobytes/Second" MegabytesPerSecond = "Megabytes/Second" GigabytesPerSecond = "Gigabytes/Second" TerabytesPerSecond = "Terabytes/Second" BitsPerSecond = "Bits/Second" KilobitsPerSecond = "Kilobits/Second" MegabitsPerSecond = "Megabits/Second" GigabitsPerSecond = "Gigabits/Second" TerabitsPerSecond = "Terabits/Second" CountPerSecond = "Count/Second"
Ancestors
- enum.Enum
Class variables
var Bits
var BitsPerSecond
var Bytes
var BytesPerSecond
var Count
var CountPerSecond
var Gigabits
var GigabitsPerSecond
var Gigabytes
var GigabytesPerSecond
var Kilobits
var KilobitsPerSecond
var Kilobytes
var KilobytesPerSecond
var Megabits
var MegabitsPerSecond
var Megabytes
var MegabytesPerSecond
var Microseconds
var Milliseconds
var Percent
var Seconds
var Terabits
var TerabitsPerSecond
var Terabytes
var TerabytesPerSecond
class MetricUnitError (*args, **kwargs)
-
When metric unit is not supported by CloudWatch
Expand source code
class MetricUnitError(Exception): """When metric unit is not supported by CloudWatch""" pass
Ancestors
- builtins.Exception
- builtins.BaseException
class MetricValueError (*args, **kwargs)
-
When metric value isn't a valid number
Expand source code
class MetricValueError(Exception): """When metric value isn't a valid number""" pass
Ancestors
- builtins.Exception
- builtins.BaseException
class Metrics (service: str | None = None, namespace: str | None = None, provider: AmazonCloudWatchEMFProvider | None = None)
-
Metrics create an CloudWatch EMF object with up to 100 metrics
Use Metrics when you need to create multiple metrics that have dimensions in common (e.g. service_name="payment").
Metrics up to 100 metrics in memory and are shared across all its instances. That means it can be safely instantiated outside of a Lambda function, or anywhere else.
A decorator (log_metrics) is provided so metrics are published at the end of its execution. If more than 100 metrics are added at a given function execution, these metrics are serialized and published before adding a given metric to prevent metric truncation.
Example
Creates a few metrics and publish at the end of a function execution
from aws_lambda_powertools import Metrics metrics = Metrics(namespace="ServerlessAirline", service="payment") @metrics.log_metrics(capture_cold_start_metric=True) def lambda_handler(): metrics.add_metric(name="BookingConfirmation", unit="Count", value=1) metrics.add_dimension(name="function_version", value="$LATEST") return True
Environment Variables
POWERTOOLS_METRICS_NAMESPACE : str metric namespace POWERTOOLS_SERVICE_NAME : str service name used for default dimension
Parameters
service
:str
, optional- service name to be used as metric dimension, by default "service_undefined"
namespace
:str
, optional- Namespace for metrics
provider
:AmazonCloudWatchEMFProvider
, optional- Pre-configured AmazonCloudWatchEMFProvider provider
Raises
MetricUnitError
- When metric unit isn't supported by CloudWatch
MetricResolutionError
- When metric resolution isn't supported by CloudWatch
MetricValueError
- When metric value isn't a number
SchemaValidationError
- When metric object fails EMF schema validation
Expand source code
class Metrics: """Metrics create an CloudWatch EMF object with up to 100 metrics Use Metrics when you need to create multiple metrics that have dimensions in common (e.g. service_name="payment"). Metrics up to 100 metrics in memory and are shared across all its instances. That means it can be safely instantiated outside of a Lambda function, or anywhere else. A decorator (log_metrics) is provided so metrics are published at the end of its execution. If more than 100 metrics are added at a given function execution, these metrics are serialized and published before adding a given metric to prevent metric truncation. Example ------- **Creates a few metrics and publish at the end of a function execution** from aws_lambda_powertools import Metrics metrics = Metrics(namespace="ServerlessAirline", service="payment") @metrics.log_metrics(capture_cold_start_metric=True) def lambda_handler(): metrics.add_metric(name="BookingConfirmation", unit="Count", value=1) metrics.add_dimension(name="function_version", value="$LATEST") return True Environment variables --------------------- POWERTOOLS_METRICS_NAMESPACE : str metric namespace POWERTOOLS_SERVICE_NAME : str service name used for default dimension Parameters ---------- service : str, optional service name to be used as metric dimension, by default "service_undefined" namespace : str, optional Namespace for metrics provider: AmazonCloudWatchEMFProvider, optional Pre-configured AmazonCloudWatchEMFProvider provider Raises ------ MetricUnitError When metric unit isn't supported by CloudWatch MetricResolutionError When metric resolution isn't supported by CloudWatch MetricValueError When metric value isn't a number SchemaValidationError When metric object fails EMF schema validation """ # NOTE: We use class attrs to share metrics data across instances # this allows customers to initialize Metrics() throughout their code base (and middlewares) # and not get caught by accident with metrics data loss, or data deduplication # e.g., m1 and m2 add metric ProductCreated, however m1 has 'version' dimension but m2 doesn't # Result: ProductCreated is created twice as we now have 2 different EMF blobs _metrics: Dict[str, Any] = {} _dimensions: Dict[str, str] = {} _metadata: Dict[str, Any] = {} _default_dimensions: Dict[str, Any] = {} def __init__( self, service: str | None = None, namespace: str | None = None, provider: AmazonCloudWatchEMFProvider | None = None, ): self.metric_set = self._metrics self.metadata_set = self._metadata self.default_dimensions = self._default_dimensions self.dimension_set = self._dimensions self.dimension_set.update(**self._default_dimensions) if provider is None: self.provider = AmazonCloudWatchEMFProvider( namespace=namespace, service=service, metric_set=self.metric_set, dimension_set=self.dimension_set, metadata_set=self.metadata_set, default_dimensions=self._default_dimensions, ) else: self.provider = provider def add_metric( self, name: str, unit: MetricUnit | str, value: float, resolution: MetricResolution | int = 60, ) -> None: self.provider.add_metric(name=name, unit=unit, value=value, resolution=resolution) def add_dimension(self, name: str, value: str) -> None: self.provider.add_dimension(name=name, value=value) def serialize_metric_set( self, metrics: Dict | None = None, dimensions: Dict | None = None, metadata: Dict | None = None, ) -> CloudWatchEMFOutput: return self.provider.serialize_metric_set(metrics=metrics, dimensions=dimensions, metadata=metadata) def add_metadata(self, key: str, value: Any) -> None: self.provider.add_metadata(key=key, value=value) def flush_metrics(self, raise_on_empty_metrics: bool = False) -> None: self.provider.flush_metrics(raise_on_empty_metrics=raise_on_empty_metrics) def log_metrics( self, lambda_handler: Callable[[Dict, Any], Any] | Optional[Callable[[Dict, Any, Optional[Dict]], Any]] = None, capture_cold_start_metric: bool = False, raise_on_empty_metrics: bool = False, default_dimensions: Dict[str, str] | None = None, ): return self.provider.log_metrics( lambda_handler=lambda_handler, capture_cold_start_metric=capture_cold_start_metric, raise_on_empty_metrics=raise_on_empty_metrics, default_dimensions=default_dimensions, ) def set_default_dimensions(self, **dimensions) -> None: self.provider.set_default_dimensions(**dimensions) """Persist dimensions across Lambda invocations Parameters ---------- dimensions : Dict[str, Any], optional metric dimensions as key=value Example ------- **Sets some default dimensions that will always be present across metrics and invocations** from aws_lambda_powertools import Metrics metrics = Metrics(namespace="ServerlessAirline", service="payment") metrics.set_default_dimensions(environment="demo", another="one") @metrics.log_metrics() def lambda_handler(): return True """ for name, value in dimensions.items(): self.add_dimension(name, value) self.default_dimensions.update(**dimensions) def clear_default_dimensions(self) -> None: self.provider.default_dimensions.clear() self.default_dimensions.clear() def clear_metrics(self) -> None: self.provider.clear_metrics() # We now allow customers to bring their own instance # of the AmazonCloudWatchEMFProvider provider # So we need to define getter/setter for namespace and service properties # To access these attributes on the provider instance. @property def namespace(self): return self.provider.namespace @namespace.setter def namespace(self, namespace): self.provider.namespace = namespace @property def service(self): return self.provider.service @service.setter def service(self, service): self.provider.service = service
Instance variables
var namespace
-
Expand source code
@property def namespace(self): return self.provider.namespace
var service
-
Expand source code
@property def service(self): return self.provider.service
Methods
def add_dimension(self, name: str, value: str) ‑> None
-
Expand source code
def add_dimension(self, name: str, value: str) -> None: self.provider.add_dimension(name=name, value=value)
def add_metadata(self, key: str, value: Any) ‑> None
-
Expand source code
def add_metadata(self, key: str, value: Any) -> None: self.provider.add_metadata(key=key, value=value)
def add_metric(self, name: str, unit: MetricUnit | str, value: float, resolution: MetricResolution | int = 60) ‑> None
-
Expand source code
def add_metric( self, name: str, unit: MetricUnit | str, value: float, resolution: MetricResolution | int = 60, ) -> None: self.provider.add_metric(name=name, unit=unit, value=value, resolution=resolution)
def clear_default_dimensions(self) ‑> None
-
Expand source code
def clear_default_dimensions(self) -> None: self.provider.default_dimensions.clear() self.default_dimensions.clear()
def clear_metrics(self) ‑> None
-
Expand source code
def clear_metrics(self) -> None: self.provider.clear_metrics()
def flush_metrics(self, raise_on_empty_metrics: bool = False) ‑> None
-
Expand source code
def flush_metrics(self, raise_on_empty_metrics: bool = False) -> None: self.provider.flush_metrics(raise_on_empty_metrics=raise_on_empty_metrics)
def log_metrics(self, lambda_handler: Callable[[Dict, Any], Any] | Optional[Callable[[Dict, Any, Optional[Dict]], Any]] = None, capture_cold_start_metric: bool = False, raise_on_empty_metrics: bool = False, default_dimensions: Dict[str, str] | None = None)
-
Expand source code
def log_metrics( self, lambda_handler: Callable[[Dict, Any], Any] | Optional[Callable[[Dict, Any, Optional[Dict]], Any]] = None, capture_cold_start_metric: bool = False, raise_on_empty_metrics: bool = False, default_dimensions: Dict[str, str] | None = None, ): return self.provider.log_metrics( lambda_handler=lambda_handler, capture_cold_start_metric=capture_cold_start_metric, raise_on_empty_metrics=raise_on_empty_metrics, default_dimensions=default_dimensions, )
def serialize_metric_set(self, metrics: Dict | None = None, dimensions: Dict | None = None, metadata: Dict | None = None) ‑> CloudWatchEMFOutput
-
Expand source code
def serialize_metric_set( self, metrics: Dict | None = None, dimensions: Dict | None = None, metadata: Dict | None = None, ) -> CloudWatchEMFOutput: return self.provider.serialize_metric_set(metrics=metrics, dimensions=dimensions, metadata=metadata)
def set_default_dimensions(self, **dimensions) ‑> None
-
Expand source code
def set_default_dimensions(self, **dimensions) -> None: self.provider.set_default_dimensions(**dimensions) """Persist dimensions across Lambda invocations Parameters ---------- dimensions : Dict[str, Any], optional metric dimensions as key=value Example ------- **Sets some default dimensions that will always be present across metrics and invocations** from aws_lambda_powertools import Metrics metrics = Metrics(namespace="ServerlessAirline", service="payment") metrics.set_default_dimensions(environment="demo", another="one") @metrics.log_metrics() def lambda_handler(): return True """ for name, value in dimensions.items(): self.add_dimension(name, value) self.default_dimensions.update(**dimensions)
class SchemaValidationError (*args, **kwargs)
-
When serialization fail schema validation
Expand source code
class SchemaValidationError(Exception): """When serialization fail schema validation""" pass
Ancestors
- builtins.Exception
- builtins.BaseException