Module aws_lambda_powertools.shared.functions

Expand source code
from __future__ import annotations

import base64
import itertools
import logging
import os
import warnings
from binascii import Error as BinAsciiError
from typing import Any, Dict, Generator, Optional, Union, overload

from aws_lambda_powertools.shared import constants

logger = logging.getLogger(__name__)


def strtobool(value: str) -> bool:
    """Convert a string representation of truth to True or False.

    True values are 'y', 'yes', 't', 'true', 'on', and '1'; false values
    are 'n', 'no', 'f', 'false', 'off', and '0'.  Raises ValueError if
    'value' is anything else.

    > note:: Copied from distutils.util.
    """
    value = value.lower()
    if value in ("1", "y", "yes", "t", "true", "on"):
        return True
    if value in ("0", "n", "no", "f", "false", "off"):
        return False
    raise ValueError(f"invalid truth value {value!r}")


def resolve_truthy_env_var_choice(env: str, choice: Optional[bool] = None) -> bool:
    """Pick explicit choice over truthy env value, if available, otherwise return truthy env value

    NOTE: Environment variable should be resolved by the caller.

    Parameters
    ----------
    env : str
        environment variable actual value
    choice : bool
        explicit choice

    Returns
    -------
    choice : str
        resolved choice as either bool or environment value
    """
    return choice if choice is not None else strtobool(env)


def resolve_max_age(env: str, choice: Optional[int]) -> int:
    """Resolve max age value"""
    return choice if choice is not None else int(env)


@overload
def resolve_env_var_choice(env: Optional[str], choice: float) -> float:
    ...


@overload
def resolve_env_var_choice(env: Optional[str], choice: str) -> str:
    ...


@overload
def resolve_env_var_choice(env: Optional[str], choice: Optional[str]) -> str:
    ...


def resolve_env_var_choice(
    env: Optional[str] = None,
    choice: Optional[Union[str, float]] = None,
) -> Optional[Union[str, float]]:
    """Pick explicit choice over env, if available, otherwise return env value received

    NOTE: Environment variable should be resolved by the caller.

    Parameters
    ----------
    env : str, Optional
        environment variable actual value
    choice : str|float, optional
        explicit choice

    Returns
    -------
    choice : str, Optional
        resolved choice as either bool or environment value
    """
    return choice if choice is not None else env


def base64_decode(value: str) -> bytes:
    try:
        logger.debug("Decoding base64 record item before parsing")
        return base64.b64decode(value)
    except (BinAsciiError, TypeError):
        raise ValueError("base64 decode failed")


def bytes_to_string(value: bytes) -> str:
    try:
        return value.decode("utf-8")
    except (BinAsciiError, TypeError):
        raise ValueError("base64 UTF-8 decode failed")


def powertools_dev_is_set() -> bool:
    is_on = strtobool(os.getenv(constants.POWERTOOLS_DEV_ENV, "0"))
    if is_on:
        warnings.warn(
            "POWERTOOLS_DEV environment variable is enabled. Increasing verbosity across utilities.",
            stacklevel=2,
        )
        return True

    return False


def powertools_debug_is_set() -> bool:
    is_on = strtobool(os.getenv(constants.POWERTOOLS_DEBUG_ENV, "0"))
    if is_on:
        warnings.warn("POWERTOOLS_DEBUG environment variable is enabled. Setting logging level to DEBUG.", stacklevel=2)
        return True

    return False


def slice_dictionary(data: Dict, chunk_size: int) -> Generator[Dict, None, None]:
    for _ in range(0, len(data), chunk_size):
        yield {dict_key: data[dict_key] for dict_key in itertools.islice(data, chunk_size)}


def extract_event_from_common_models(data: Any) -> Dict | Any:
    """Extract raw event from common types used in Powertools

    If event cannot be extracted, return received data as is.

    Common models:

        - Event Source Data Classes (DictWrapper)
        - Python Dataclasses
        - Pydantic Models (BaseModel)

    Parameters
    ----------
    data : Any
        Original event, a potential instance of DictWrapper/BaseModel/Dataclass

    Notes
    -----

    Why not using static type for function argument?

    DictWrapper would cause a circular import. Pydantic BaseModel could
    cause a ModuleNotFound or trigger init reflection worsening cold start.
    """
    # Short-circuit most common type first for perf
    if isinstance(data, dict):
        return data

    # Is it an Event Source Data Class?
    if getattr(data, "raw_event", None):
        return data.raw_event

    # Is it a Pydantic Model?
    if is_pydantic(data):
        return pydantic_to_dict(data)

    # Is it a Dataclass?
    if is_dataclass(data):
        return dataclass_to_dict(data)

    # Return as is
    return data


def is_pydantic(data) -> bool:
    """Whether data is a Pydantic model by checking common field available in v1/v2

    Parameters
    ----------
    data: BaseModel
        Pydantic model

    Returns
    -------
    bool
        Whether it's a Pydantic model
    """
    return getattr(data, "json", False)


def is_dataclass(data) -> bool:
    """Whether data is a dataclass

    Parameters
    ----------
    data: dataclass
        Dataclass obj

    Returns
    -------
    bool
        Whether it's a Dataclass
    """
    return getattr(data, "__dataclass_fields__", False)


def pydantic_to_dict(data) -> dict:
    """Dump Pydantic model v1 and v2 as dict.

    Note we use lazy import since Pydantic is an optional dependency.

    Parameters
    ----------
    data: BaseModel
        Pydantic model

    Returns
    -------

    dict:
        Pydantic model serialized to dict
    """
    from aws_lambda_powertools.event_handler.openapi.compat import _model_dump

    return _model_dump(data)


def dataclass_to_dict(data) -> dict:
    """Dump standard dataclass as dict.

    Note we use lazy import to prevent bloating other code parts.

    Parameters
    ----------
    data: dataclass
        Dataclass

    Returns
    -------

    dict:
        Pydantic model serialized to dict
    """
    import dataclasses

    return dataclasses.asdict(data)

Functions

def base64_decode(value: str) ‑> bytes
Expand source code
def base64_decode(value: str) -> bytes:
    try:
        logger.debug("Decoding base64 record item before parsing")
        return base64.b64decode(value)
    except (BinAsciiError, TypeError):
        raise ValueError("base64 decode failed")
def bytes_to_string(value: bytes) ‑> str
Expand source code
def bytes_to_string(value: bytes) -> str:
    try:
        return value.decode("utf-8")
    except (BinAsciiError, TypeError):
        raise ValueError("base64 UTF-8 decode failed")
def dataclass_to_dict(data) ‑> dict

Dump standard dataclass as dict.

Note we use lazy import to prevent bloating other code parts.

Parameters

data : dataclass
Dataclass

Returns

dict:
Pydantic model serialized to dict
Expand source code
def dataclass_to_dict(data) -> dict:
    """Dump standard dataclass as dict.

    Note we use lazy import to prevent bloating other code parts.

    Parameters
    ----------
    data: dataclass
        Dataclass

    Returns
    -------

    dict:
        Pydantic model serialized to dict
    """
    import dataclasses

    return dataclasses.asdict(data)
def extract_event_from_common_models(data: Any) ‑> Union[Dict, Any]

Extract raw event from common types used in Powertools

If event cannot be extracted, return received data as is.

Common models:

- Event Source Data Classes (DictWrapper)
- Python Dataclasses
- Pydantic Models (BaseModel)

Parameters

data : Any
Original event, a potential instance of DictWrapper/BaseModel/Dataclass

Notes

Why not using static type for function argument?

DictWrapper would cause a circular import. Pydantic BaseModel could cause a ModuleNotFound or trigger init reflection worsening cold start.

Expand source code
def extract_event_from_common_models(data: Any) -> Dict | Any:
    """Extract raw event from common types used in Powertools

    If event cannot be extracted, return received data as is.

    Common models:

        - Event Source Data Classes (DictWrapper)
        - Python Dataclasses
        - Pydantic Models (BaseModel)

    Parameters
    ----------
    data : Any
        Original event, a potential instance of DictWrapper/BaseModel/Dataclass

    Notes
    -----

    Why not using static type for function argument?

    DictWrapper would cause a circular import. Pydantic BaseModel could
    cause a ModuleNotFound or trigger init reflection worsening cold start.
    """
    # Short-circuit most common type first for perf
    if isinstance(data, dict):
        return data

    # Is it an Event Source Data Class?
    if getattr(data, "raw_event", None):
        return data.raw_event

    # Is it a Pydantic Model?
    if is_pydantic(data):
        return pydantic_to_dict(data)

    # Is it a Dataclass?
    if is_dataclass(data):
        return dataclass_to_dict(data)

    # Return as is
    return data
def is_dataclass(data) ‑> bool

Whether data is a dataclass

Parameters

data : dataclass
Dataclass obj

Returns

bool
Whether it's a Dataclass
Expand source code
def is_dataclass(data) -> bool:
    """Whether data is a dataclass

    Parameters
    ----------
    data: dataclass
        Dataclass obj

    Returns
    -------
    bool
        Whether it's a Dataclass
    """
    return getattr(data, "__dataclass_fields__", False)
def is_pydantic(data) ‑> bool

Whether data is a Pydantic model by checking common field available in v1/v2

Parameters

data : BaseModel
Pydantic model

Returns

bool
Whether it's a Pydantic model
Expand source code
def is_pydantic(data) -> bool:
    """Whether data is a Pydantic model by checking common field available in v1/v2

    Parameters
    ----------
    data: BaseModel
        Pydantic model

    Returns
    -------
    bool
        Whether it's a Pydantic model
    """
    return getattr(data, "json", False)
def powertools_debug_is_set() ‑> bool
Expand source code
def powertools_debug_is_set() -> bool:
    is_on = strtobool(os.getenv(constants.POWERTOOLS_DEBUG_ENV, "0"))
    if is_on:
        warnings.warn("POWERTOOLS_DEBUG environment variable is enabled. Setting logging level to DEBUG.", stacklevel=2)
        return True

    return False
def powertools_dev_is_set() ‑> bool
Expand source code
def powertools_dev_is_set() -> bool:
    is_on = strtobool(os.getenv(constants.POWERTOOLS_DEV_ENV, "0"))
    if is_on:
        warnings.warn(
            "POWERTOOLS_DEV environment variable is enabled. Increasing verbosity across utilities.",
            stacklevel=2,
        )
        return True

    return False
def pydantic_to_dict(data) ‑> dict

Dump Pydantic model v1 and v2 as dict.

Note we use lazy import since Pydantic is an optional dependency.

Parameters

data : BaseModel
Pydantic model

Returns

dict:
Pydantic model serialized to dict
Expand source code
def pydantic_to_dict(data) -> dict:
    """Dump Pydantic model v1 and v2 as dict.

    Note we use lazy import since Pydantic is an optional dependency.

    Parameters
    ----------
    data: BaseModel
        Pydantic model

    Returns
    -------

    dict:
        Pydantic model serialized to dict
    """
    from aws_lambda_powertools.event_handler.openapi.compat import _model_dump

    return _model_dump(data)
def resolve_env_var_choice(env: Optional[str] = None, choice: Optional[Union[str, float]] = None) ‑> Union[str, float, ForwardRef(None)]

Pick explicit choice over env, if available, otherwise return env value received

NOTE: Environment variable should be resolved by the caller.

Parameters

env : str, Optional
environment variable actual value
choice : str|float, optional
explicit choice

Returns

choice : str, Optional
resolved choice as either bool or environment value
Expand source code
def resolve_env_var_choice(
    env: Optional[str] = None,
    choice: Optional[Union[str, float]] = None,
) -> Optional[Union[str, float]]:
    """Pick explicit choice over env, if available, otherwise return env value received

    NOTE: Environment variable should be resolved by the caller.

    Parameters
    ----------
    env : str, Optional
        environment variable actual value
    choice : str|float, optional
        explicit choice

    Returns
    -------
    choice : str, Optional
        resolved choice as either bool or environment value
    """
    return choice if choice is not None else env
def resolve_max_age(env: str, choice: Optional[int]) ‑> int

Resolve max age value

Expand source code
def resolve_max_age(env: str, choice: Optional[int]) -> int:
    """Resolve max age value"""
    return choice if choice is not None else int(env)
def resolve_truthy_env_var_choice(env: str, choice: Optional[bool] = None) ‑> bool

Pick explicit choice over truthy env value, if available, otherwise return truthy env value

NOTE: Environment variable should be resolved by the caller.

Parameters

env : str
environment variable actual value
choice : bool
explicit choice

Returns

choice : str
resolved choice as either bool or environment value
Expand source code
def resolve_truthy_env_var_choice(env: str, choice: Optional[bool] = None) -> bool:
    """Pick explicit choice over truthy env value, if available, otherwise return truthy env value

    NOTE: Environment variable should be resolved by the caller.

    Parameters
    ----------
    env : str
        environment variable actual value
    choice : bool
        explicit choice

    Returns
    -------
    choice : str
        resolved choice as either bool or environment value
    """
    return choice if choice is not None else strtobool(env)
def slice_dictionary(data: Dict, chunk_size: int) ‑> Generator[Dict, None, None]
Expand source code
def slice_dictionary(data: Dict, chunk_size: int) -> Generator[Dict, None, None]:
    for _ in range(0, len(data), chunk_size):
        yield {dict_key: data[dict_key] for dict_key in itertools.islice(data, chunk_size)}
def strtobool(value: str) ‑> bool

Convert a string representation of truth to True or False.

True values are 'y', 'yes', 't', 'true', 'on', and '1'; false values are 'n', 'no', 'f', 'false', 'off', and '0'. Raises ValueError if 'value' is anything else.

note:: Copied from distutils.util.

Expand source code
def strtobool(value: str) -> bool:
    """Convert a string representation of truth to True or False.

    True values are 'y', 'yes', 't', 'true', 'on', and '1'; false values
    are 'n', 'no', 'f', 'false', 'off', and '0'.  Raises ValueError if
    'value' is anything else.

    > note:: Copied from distutils.util.
    """
    value = value.lower()
    if value in ("1", "y", "yes", "t", "true", "on"):
        return True
    if value in ("0", "n", "no", "f", "false", "off"):
        return False
    raise ValueError(f"invalid truth value {value!r}")