Module aws_lambda_powertools.event_handler.openapi.dependant
Expand source code
import inspect
import re
from typing import Any, Callable, Dict, ForwardRef, List, Optional, Set, Tuple, Type, cast
from pydantic import BaseModel
from aws_lambda_powertools.event_handler.openapi.compat import (
ModelField,
create_body_model,
evaluate_forwardref,
is_scalar_field,
is_scalar_sequence_field,
)
from aws_lambda_powertools.event_handler.openapi.params import (
Body,
Dependant,
Param,
ParamTypes,
Query,
_File,
_Form,
_Header,
analyze_param,
create_response_field,
get_flat_dependant,
)
from aws_lambda_powertools.event_handler.openapi.types import OpenAPIResponse, OpenAPIResponseContentModel
"""
This turns the opaque function signature into typed, validated models.
It relies on Pydantic's typing and validation to achieve this in a declarative way.
This enables traits like autocompletion, validation, and declarative structure vs imperative parsing.
This code parses an OpenAPI operation handler function signature into Pydantic models. It uses inspect to get the
signature and regex to parse path parameters. Each parameter is analyzed to extract its type annotation and generate
a corresponding Pydantic field, which are added to a Dependant model. Return values are handled similarly.
This modeling allows for type checking, automatic parameter name/location/type extraction, and input validation -
turning the opaque signature into validated models. It relies on Pydantic's typing and validation for a declarative
approach over imperative parsing, enabling autocompletion, validation and structure.
"""
def add_param_to_fields(
*,
field: ModelField,
dependant: Dependant,
) -> None:
"""
Adds a parameter to the list of parameters in the dependant model.
Parameters
----------
field: ModelField
The field to add
dependant: Dependant
The dependant model to add the field to
"""
field_info = cast(Param, field.field_info)
if field_info.in_ == ParamTypes.path:
dependant.path_params.append(field)
elif field_info.in_ == ParamTypes.query:
dependant.query_params.append(field)
elif field_info.in_ == ParamTypes.header:
dependant.header_params.append(field)
else:
if field_info.in_ != ParamTypes.cookie:
raise AssertionError(f"Unsupported param type: {field_info.in_}")
dependant.cookie_params.append(field)
def get_typed_annotation(annotation: Any, globalns: Dict[str, Any]) -> Any:
"""
Evaluates a type annotation, which can be a string or a ForwardRef.
"""
if isinstance(annotation, str):
annotation = ForwardRef(annotation)
annotation = evaluate_forwardref(annotation, globalns, globalns)
return annotation
def get_typed_signature(call: Callable[..., Any]) -> inspect.Signature:
"""
Returns a typed signature for a callable, resolving forward references.
Parameters
----------
call: Callable[..., Any]
The callable to get the signature for
Returns
-------
inspect.Signature
The typed signature
"""
signature = inspect.signature(call)
# Gets the global namespace for the call. This is used to resolve forward references.
globalns = getattr(call, "__global__", {})
typed_params = [
inspect.Parameter(
name=param.name,
kind=param.kind,
default=param.default,
annotation=get_typed_annotation(param.annotation, globalns),
)
for param in signature.parameters.values()
]
# If the return annotation is not empty, add it to the signature.
if signature.return_annotation is not inspect.Signature.empty:
return_param = inspect.Parameter(
name="Return",
kind=inspect.Parameter.POSITIONAL_OR_KEYWORD,
default=None,
annotation=get_typed_annotation(signature.return_annotation, globalns),
)
return inspect.Signature(typed_params, return_annotation=return_param.annotation)
else:
return inspect.Signature(typed_params)
def get_path_param_names(path: str) -> Set[str]:
"""
Returns the path parameter names from a path template. Those are the strings between { and }.
Parameters
----------
path: str
The path template
Returns
-------
Set[str]
The path parameter names
"""
return set(re.findall("{(.*?)}", path))
def get_dependant(
*,
path: str,
call: Callable[..., Any],
name: Optional[str] = None,
responses: Optional[Dict[int, OpenAPIResponse]] = None,
) -> Dependant:
"""
Returns a dependant model for a handler function. A dependant model is a model that contains
the parameters and return value of a handler function.
Parameters
----------
path: str
The path template
call: Callable[..., Any]
The handler function
name: str, optional
The name of the handler function
responses: List[Dict[int, OpenAPIResponse]], optional
The list of extra responses for the handler function
Returns
-------
Dependant
The dependant model for the handler function
"""
path_param_names = get_path_param_names(path)
endpoint_signature = get_typed_signature(call)
signature_params = endpoint_signature.parameters
dependant = Dependant(
call=call,
name=name,
path=path,
)
# Add each parameter to the dependant model
for param_name, param in signature_params.items():
# If the parameter is a path parameter, we need to set the in_ field to "path".
is_path_param = param_name in path_param_names
# Analyze the parameter to get the Pydantic field.
param_field = analyze_param(
param_name=param_name,
annotation=param.annotation,
value=param.default,
is_path_param=is_path_param,
is_response_param=False,
)
if param_field is None:
raise AssertionError(f"Parameter field is None for param: {param_name}")
if is_body_param(param_field=param_field, is_path_param=is_path_param):
dependant.body_params.append(param_field)
else:
add_param_to_fields(field=param_field, dependant=dependant)
_add_return_annotation(dependant, endpoint_signature)
_add_extra_responses(dependant, responses)
return dependant
def _add_extra_responses(dependant: Dependant, responses: Optional[Dict[int, OpenAPIResponse]]):
# Also add the optional extra responses to the dependant model.
if not responses:
return
for response in responses.values():
for schema in response.get("content", {}).values():
if "model" in schema:
response_field = analyze_param(
param_name="return",
annotation=cast(OpenAPIResponseContentModel, schema)["model"],
value=None,
is_path_param=False,
is_response_param=True,
)
if response_field is None:
raise AssertionError("Response field is None for response model")
dependant.response_extra_models.append(response_field)
def _add_return_annotation(dependant: Dependant, endpoint_signature: inspect.Signature):
# If the return annotation is not empty, add it to the dependant model.
return_annotation = endpoint_signature.return_annotation
if return_annotation is not inspect.Signature.empty:
param_field = analyze_param(
param_name="return",
annotation=return_annotation,
value=None,
is_path_param=False,
is_response_param=True,
)
if param_field is None:
raise AssertionError("Param field is None for return annotation")
dependant.return_param = param_field
def is_body_param(*, param_field: ModelField, is_path_param: bool) -> bool:
"""
Returns whether a parameter is a request body parameter, by checking if it is a scalar field or a body field.
Parameters
----------
param_field: ModelField
The parameter field
is_path_param: bool
Whether the parameter is a path parameter
Returns
-------
bool
Whether the parameter is a request body parameter
"""
if is_path_param:
if not is_scalar_field(field=param_field):
raise AssertionError("Path params must be of one of the supported types")
return False
elif is_scalar_field(field=param_field):
return False
elif isinstance(param_field.field_info, (Query, _Header)) and is_scalar_sequence_field(param_field):
return False
else:
if not isinstance(param_field.field_info, Body):
raise AssertionError(f"Param: {param_field.name} can only be a request body, use Body()")
return True
def get_flat_params(dependant: Dependant) -> List[ModelField]:
"""
Get a list of all the parameters from a Dependant object.
Parameters
----------
dependant : Dependant
The Dependant object containing the parameters.
Returns
-------
List[ModelField]
A list of ModelField objects containing the flat parameters from the Dependant object.
"""
flat_dependant = get_flat_dependant(dependant)
return (
flat_dependant.path_params
+ flat_dependant.query_params
+ flat_dependant.header_params
+ flat_dependant.cookie_params
)
def get_body_field(*, dependant: Dependant, name: str) -> Optional[ModelField]:
"""
Get the Body field for a given Dependant object.
"""
flat_dependant = get_flat_dependant(dependant)
if not flat_dependant.body_params:
return None
first_param = flat_dependant.body_params[0]
field_info = first_param.field_info
# Handle the case where there is only one body parameter and it is embedded
embed = getattr(field_info, "embed", None)
body_param_names_set = {param.name for param in flat_dependant.body_params}
if len(body_param_names_set) == 1 and not embed:
return first_param
# If one field requires to embed, all have to be embedded
for param in flat_dependant.body_params:
setattr(param.field_info, "embed", True) # noqa: B010
# Generate a custom body model for this endpoint
model_name = "Body_" + name
body_model = create_body_model(fields=flat_dependant.body_params, model_name=model_name)
required = any(True for f in flat_dependant.body_params if f.required)
body_field_info, body_field_info_kwargs = get_body_field_info(
body_model=body_model,
flat_dependant=flat_dependant,
required=required,
)
final_field = create_response_field(
name="body",
type_=body_model,
required=required,
alias="body",
field_info=body_field_info(**body_field_info_kwargs),
)
return final_field
def get_body_field_info(
*,
body_model: Type[BaseModel],
flat_dependant: Dependant,
required: bool,
) -> Tuple[Type[Body], Dict[str, Any]]:
"""
Get the Body field info and kwargs for a given body model.
"""
body_field_info_kwargs: Dict[str, Any] = {"annotation": body_model, "alias": "body"}
if not required:
body_field_info_kwargs["default"] = None
if any(isinstance(f.field_info, _File) for f in flat_dependant.body_params):
# MAINTENANCE: body_field_info: Type[Body] = _File
raise NotImplementedError("_File fields are not supported in request bodies")
elif any(isinstance(f.field_info, _Form) for f in flat_dependant.body_params):
# MAINTENANCE: body_field_info: Type[Body] = _Form
raise NotImplementedError("_Form fields are not supported in request bodies")
else:
body_field_info = Body
body_param_media_types = [
f.field_info.media_type for f in flat_dependant.body_params if isinstance(f.field_info, Body)
]
if len(set(body_param_media_types)) == 1:
body_field_info_kwargs["media_type"] = body_param_media_types[0]
return body_field_info, body_field_info_kwargs
Functions
def add_param_to_fields(*, field: pydantic.fields.ModelField, dependant: Dependant) ‑> None
-
Adds a parameter to the list of parameters in the dependant model.
Parameters
field
:ModelField
- The field to add
dependant
:Dependant
- The dependant model to add the field to
Expand source code
def add_param_to_fields( *, field: ModelField, dependant: Dependant, ) -> None: """ Adds a parameter to the list of parameters in the dependant model. Parameters ---------- field: ModelField The field to add dependant: Dependant The dependant model to add the field to """ field_info = cast(Param, field.field_info) if field_info.in_ == ParamTypes.path: dependant.path_params.append(field) elif field_info.in_ == ParamTypes.query: dependant.query_params.append(field) elif field_info.in_ == ParamTypes.header: dependant.header_params.append(field) else: if field_info.in_ != ParamTypes.cookie: raise AssertionError(f"Unsupported param type: {field_info.in_}") dependant.cookie_params.append(field)
def get_body_field(*, dependant: Dependant, name: str) ‑> Optional[pydantic.fields.ModelField]
-
Get the Body field for a given Dependant object.
Expand source code
def get_body_field(*, dependant: Dependant, name: str) -> Optional[ModelField]: """ Get the Body field for a given Dependant object. """ flat_dependant = get_flat_dependant(dependant) if not flat_dependant.body_params: return None first_param = flat_dependant.body_params[0] field_info = first_param.field_info # Handle the case where there is only one body parameter and it is embedded embed = getattr(field_info, "embed", None) body_param_names_set = {param.name for param in flat_dependant.body_params} if len(body_param_names_set) == 1 and not embed: return first_param # If one field requires to embed, all have to be embedded for param in flat_dependant.body_params: setattr(param.field_info, "embed", True) # noqa: B010 # Generate a custom body model for this endpoint model_name = "Body_" + name body_model = create_body_model(fields=flat_dependant.body_params, model_name=model_name) required = any(True for f in flat_dependant.body_params if f.required) body_field_info, body_field_info_kwargs = get_body_field_info( body_model=body_model, flat_dependant=flat_dependant, required=required, ) final_field = create_response_field( name="body", type_=body_model, required=required, alias="body", field_info=body_field_info(**body_field_info_kwargs), ) return final_field
def get_body_field_info(*, body_model: Type[pydantic.main.BaseModel], flat_dependant: Dependant, required: bool) ‑> Tuple[Type[Body], Dict[str, Any]]
-
Get the Body field info and kwargs for a given body model.
Expand source code
def get_body_field_info( *, body_model: Type[BaseModel], flat_dependant: Dependant, required: bool, ) -> Tuple[Type[Body], Dict[str, Any]]: """ Get the Body field info and kwargs for a given body model. """ body_field_info_kwargs: Dict[str, Any] = {"annotation": body_model, "alias": "body"} if not required: body_field_info_kwargs["default"] = None if any(isinstance(f.field_info, _File) for f in flat_dependant.body_params): # MAINTENANCE: body_field_info: Type[Body] = _File raise NotImplementedError("_File fields are not supported in request bodies") elif any(isinstance(f.field_info, _Form) for f in flat_dependant.body_params): # MAINTENANCE: body_field_info: Type[Body] = _Form raise NotImplementedError("_Form fields are not supported in request bodies") else: body_field_info = Body body_param_media_types = [ f.field_info.media_type for f in flat_dependant.body_params if isinstance(f.field_info, Body) ] if len(set(body_param_media_types)) == 1: body_field_info_kwargs["media_type"] = body_param_media_types[0] return body_field_info, body_field_info_kwargs
def get_dependant(*, path: str, call: Callable[..., Any], name: Optional[str] = None, responses: Optional[Dict[int, OpenAPIResponse]] = None) ‑> Dependant
-
Returns a dependant model for a handler function. A dependant model is a model that contains the parameters and return value of a handler function.
Parameters
path
:str
- The path template
call
:Callable[…, Any]
- The handler function
name
:str
, optional- The name of the handler function
responses
:List[Dict[int, OpenAPIResponse]]
, optional- The list of extra responses for the handler function
Returns
Dependant
- The dependant model for the handler function
Expand source code
def get_dependant( *, path: str, call: Callable[..., Any], name: Optional[str] = None, responses: Optional[Dict[int, OpenAPIResponse]] = None, ) -> Dependant: """ Returns a dependant model for a handler function. A dependant model is a model that contains the parameters and return value of a handler function. Parameters ---------- path: str The path template call: Callable[..., Any] The handler function name: str, optional The name of the handler function responses: List[Dict[int, OpenAPIResponse]], optional The list of extra responses for the handler function Returns ------- Dependant The dependant model for the handler function """ path_param_names = get_path_param_names(path) endpoint_signature = get_typed_signature(call) signature_params = endpoint_signature.parameters dependant = Dependant( call=call, name=name, path=path, ) # Add each parameter to the dependant model for param_name, param in signature_params.items(): # If the parameter is a path parameter, we need to set the in_ field to "path". is_path_param = param_name in path_param_names # Analyze the parameter to get the Pydantic field. param_field = analyze_param( param_name=param_name, annotation=param.annotation, value=param.default, is_path_param=is_path_param, is_response_param=False, ) if param_field is None: raise AssertionError(f"Parameter field is None for param: {param_name}") if is_body_param(param_field=param_field, is_path_param=is_path_param): dependant.body_params.append(param_field) else: add_param_to_fields(field=param_field, dependant=dependant) _add_return_annotation(dependant, endpoint_signature) _add_extra_responses(dependant, responses) return dependant
def get_flat_params(dependant: Dependant) ‑> List[pydantic.fields.ModelField]
-
Get a list of all the parameters from a Dependant object.
Parameters
dependant
:Dependant
- The Dependant object containing the parameters.
Returns
List[ModelField]
- A list of ModelField objects containing the flat parameters from the Dependant object.
Expand source code
def get_flat_params(dependant: Dependant) -> List[ModelField]: """ Get a list of all the parameters from a Dependant object. Parameters ---------- dependant : Dependant The Dependant object containing the parameters. Returns ------- List[ModelField] A list of ModelField objects containing the flat parameters from the Dependant object. """ flat_dependant = get_flat_dependant(dependant) return ( flat_dependant.path_params + flat_dependant.query_params + flat_dependant.header_params + flat_dependant.cookie_params )
def get_path_param_names(path: str) ‑> Set[str]
-
Returns the path parameter names from a path template. Those are the strings between { and }.
Parameters
path
:str
- The path template
Returns
Set[str]
- The path parameter names
Expand source code
def get_path_param_names(path: str) -> Set[str]: """ Returns the path parameter names from a path template. Those are the strings between { and }. Parameters ---------- path: str The path template Returns ------- Set[str] The path parameter names """ return set(re.findall("{(.*?)}", path))
def get_typed_annotation(annotation: Any, globalns: Dict[str, Any]) ‑> Any
-
Evaluates a type annotation, which can be a string or a ForwardRef.
Expand source code
def get_typed_annotation(annotation: Any, globalns: Dict[str, Any]) -> Any: """ Evaluates a type annotation, which can be a string or a ForwardRef. """ if isinstance(annotation, str): annotation = ForwardRef(annotation) annotation = evaluate_forwardref(annotation, globalns, globalns) return annotation
def get_typed_signature(call: Callable[..., Any]) ‑> inspect.Signature
-
Returns a typed signature for a callable, resolving forward references.
Parameters
call
:Callable[…, Any]
- The callable to get the signature for
Returns
inspect.Signature
- The typed signature
Expand source code
def get_typed_signature(call: Callable[..., Any]) -> inspect.Signature: """ Returns a typed signature for a callable, resolving forward references. Parameters ---------- call: Callable[..., Any] The callable to get the signature for Returns ------- inspect.Signature The typed signature """ signature = inspect.signature(call) # Gets the global namespace for the call. This is used to resolve forward references. globalns = getattr(call, "__global__", {}) typed_params = [ inspect.Parameter( name=param.name, kind=param.kind, default=param.default, annotation=get_typed_annotation(param.annotation, globalns), ) for param in signature.parameters.values() ] # If the return annotation is not empty, add it to the signature. if signature.return_annotation is not inspect.Signature.empty: return_param = inspect.Parameter( name="Return", kind=inspect.Parameter.POSITIONAL_OR_KEYWORD, default=None, annotation=get_typed_annotation(signature.return_annotation, globalns), ) return inspect.Signature(typed_params, return_annotation=return_param.annotation) else: return inspect.Signature(typed_params)
def is_body_param(*, param_field: pydantic.fields.ModelField, is_path_param: bool) ‑> bool
-
Returns whether a parameter is a request body parameter, by checking if it is a scalar field or a body field.
Parameters
param_field
:ModelField
- The parameter field
is_path_param
:bool
- Whether the parameter is a path parameter
Returns
bool
- Whether the parameter is a request body parameter
Expand source code
def is_body_param(*, param_field: ModelField, is_path_param: bool) -> bool: """ Returns whether a parameter is a request body parameter, by checking if it is a scalar field or a body field. Parameters ---------- param_field: ModelField The parameter field is_path_param: bool Whether the parameter is a path parameter Returns ------- bool Whether the parameter is a request body parameter """ if is_path_param: if not is_scalar_field(field=param_field): raise AssertionError("Path params must be of one of the supported types") return False elif is_scalar_field(field=param_field): return False elif isinstance(param_field.field_info, (Query, _Header)) and is_scalar_sequence_field(param_field): return False else: if not isinstance(param_field.field_info, Body): raise AssertionError(f"Param: {param_field.name} can only be a request body, use Body()") return True