Module aws_lambda_powertools.shared.functions
Expand source code
from __future__ import annotations
import base64
import itertools
import logging
import os
import warnings
from binascii import Error as BinAsciiError
from pathlib import Path
from typing import Any, Dict, Generator, Optional, Union, overload
from aws_lambda_powertools.shared import constants
logger = logging.getLogger(__name__)
def strtobool(value: str) -> bool:
"""Convert a string representation of truth to True or False.
True values are 'y', 'yes', 't', 'true', 'on', and '1'; false values
are 'n', 'no', 'f', 'false', 'off', and '0'. Raises ValueError if
'value' is anything else.
> note:: Copied from distutils.util.
"""
value = value.lower()
if value in ("1", "y", "yes", "t", "true", "on"):
return True
if value in ("0", "n", "no", "f", "false", "off"):
return False
raise ValueError(f"invalid truth value {value!r}")
def resolve_truthy_env_var_choice(env: str, choice: Optional[bool] = None) -> bool:
"""Pick explicit choice over truthy env value, if available, otherwise return truthy env value
NOTE: Environment variable should be resolved by the caller.
Parameters
----------
env : str
environment variable actual value
choice : bool
explicit choice
Returns
-------
choice : str
resolved choice as either bool or environment value
"""
return choice if choice is not None else strtobool(env)
def resolve_max_age(env: str, choice: Optional[int]) -> int:
"""Resolve max age value"""
return choice if choice is not None else int(env)
@overload
def resolve_env_var_choice(env: Optional[str], choice: float) -> float:
...
@overload
def resolve_env_var_choice(env: Optional[str], choice: str) -> str:
...
@overload
def resolve_env_var_choice(env: Optional[str], choice: Optional[str]) -> str:
...
def resolve_env_var_choice(
env: Optional[str] = None,
choice: Optional[Union[str, float]] = None,
) -> Optional[Union[str, float]]:
"""Pick explicit choice over env, if available, otherwise return env value received
NOTE: Environment variable should be resolved by the caller.
Parameters
----------
env : str, Optional
environment variable actual value
choice : str|float, optional
explicit choice
Returns
-------
choice : str, Optional
resolved choice as either bool or environment value
"""
return choice if choice is not None else env
def base64_decode(value: str) -> bytes:
try:
logger.debug("Decoding base64 record item before parsing")
return base64.b64decode(value)
except (BinAsciiError, TypeError):
raise ValueError("base64 decode failed")
def bytes_to_string(value: bytes) -> str:
try:
return value.decode("utf-8")
except (BinAsciiError, TypeError):
raise ValueError("base64 UTF-8 decode failed")
def powertools_dev_is_set() -> bool:
is_on = strtobool(os.getenv(constants.POWERTOOLS_DEV_ENV, "0"))
if is_on:
warnings.warn(
"POWERTOOLS_DEV environment variable is enabled. Increasing verbosity across utilities.",
stacklevel=2,
)
return True
return False
def powertools_debug_is_set() -> bool:
is_on = strtobool(os.getenv(constants.POWERTOOLS_DEBUG_ENV, "0"))
if is_on:
warnings.warn("POWERTOOLS_DEBUG environment variable is enabled. Setting logging level to DEBUG.", stacklevel=2)
return True
return False
def slice_dictionary(data: Dict, chunk_size: int) -> Generator[Dict, None, None]:
for _ in range(0, len(data), chunk_size):
yield {dict_key: data[dict_key] for dict_key in itertools.islice(data, chunk_size)}
def extract_event_from_common_models(data: Any) -> Dict | Any:
"""Extract raw event from common types used in Powertools
If event cannot be extracted, return received data as is.
Common models:
- Event Source Data Classes (DictWrapper)
- Python Dataclasses
- Pydantic Models (BaseModel)
Parameters
----------
data : Any
Original event, a potential instance of DictWrapper/BaseModel/Dataclass
Notes
-----
Why not using static type for function argument?
DictWrapper would cause a circular import. Pydantic BaseModel could
cause a ModuleNotFound or trigger init reflection worsening cold start.
"""
# Short-circuit most common type first for perf
if isinstance(data, dict):
return data
# Is it an Event Source Data Class?
if getattr(data, "raw_event", None):
return data.raw_event
# Is it a Pydantic Model?
if is_pydantic(data):
return pydantic_to_dict(data)
# Is it a Dataclass?
if is_dataclass(data):
return dataclass_to_dict(data)
# Return as is
return data
def is_pydantic(data) -> bool:
"""Whether data is a Pydantic model by checking common field available in v1/v2
Parameters
----------
data: BaseModel
Pydantic model
Returns
-------
bool
Whether it's a Pydantic model
"""
return getattr(data, "json", False)
def is_dataclass(data) -> bool:
"""Whether data is a dataclass
Parameters
----------
data: dataclass
Dataclass obj
Returns
-------
bool
Whether it's a Dataclass
"""
return getattr(data, "__dataclass_fields__", False)
def pydantic_to_dict(data) -> dict:
"""Dump Pydantic model v1 and v2 as dict.
Note we use lazy import since Pydantic is an optional dependency.
Parameters
----------
data: BaseModel
Pydantic model
Returns
-------
dict:
Pydantic model serialized to dict
"""
from aws_lambda_powertools.event_handler.openapi.compat import _model_dump
return _model_dump(data)
def dataclass_to_dict(data) -> dict:
"""Dump standard dataclass as dict.
Note we use lazy import to prevent bloating other code parts.
Parameters
----------
data: dataclass
Dataclass
Returns
-------
dict:
Pydantic model serialized to dict
"""
import dataclasses
return dataclasses.asdict(data)
def abs_lambda_path(relative_path: str = "") -> str:
"""Return the absolute path from the given relative path to lambda handler.
Parameters
----------
relative_path : str, optional
The relative path to the lambda handler, by default an empty string.
Returns
-------
str
The absolute path generated from the given relative path.
If the environment variable LAMBDA_TASK_ROOT is set, it will use that value.
Otherwise, it will use the current working directory.
If the path is empty, it will return the current working directory.
"""
# Retrieve the LAMBDA_TASK_ROOT environment variable or default to an empty string
current_working_directory = os.environ.get("LAMBDA_TASK_ROOT", "")
# If LAMBDA_TASK_ROOT is not set, use the current working directory
if not current_working_directory:
current_working_directory = str(Path.cwd())
# Combine the current working directory and the relative path to get the absolute path
absolute_path = str(Path(current_working_directory, relative_path))
return absolute_path
Functions
-
Return the absolute path from the given relative path to lambda handler.
Parameters
relative_path
:str
, optional- The relative path to the lambda handler, by default an empty string.
Returns
str
- The absolute path generated from the given relative path. If the environment variable LAMBDA_TASK_ROOT is set, it will use that value. Otherwise, it will use the current working directory. If the path is empty, it will return the current working directory.
Expand source code
def abs_lambda_path(relative_path: str = "") -> str: """Return the absolute path from the given relative path to lambda handler. Parameters ---------- relative_path : str, optional The relative path to the lambda handler, by default an empty string. Returns ------- str The absolute path generated from the given relative path. If the environment variable LAMBDA_TASK_ROOT is set, it will use that value. Otherwise, it will use the current working directory. If the path is empty, it will return the current working directory. """ # Retrieve the LAMBDA_TASK_ROOT environment variable or default to an empty string current_working_directory = os.environ.get("LAMBDA_TASK_ROOT", "") # If LAMBDA_TASK_ROOT is not set, use the current working directory if not current_working_directory: current_working_directory = str(Path.cwd()) # Combine the current working directory and the relative path to get the absolute path absolute_path = str(Path(current_working_directory, relative_path)) return absolute_path
-
Expand source code
def base64_decode(value: str) -> bytes: try: logger.debug("Decoding base64 record item before parsing") return base64.b64decode(value) except (BinAsciiError, TypeError): raise ValueError("base64 decode failed")
-
Expand source code
def bytes_to_string(value: bytes) -> str: try: return value.decode("utf-8") except (BinAsciiError, TypeError): raise ValueError("base64 UTF-8 decode failed")
-
Dump standard dataclass as dict.
Note we use lazy import to prevent bloating other code parts.
Parameters
data
:dataclass
- Dataclass
Returns
dict:
- Pydantic model serialized to dict
Expand source code
def dataclass_to_dict(data) -> dict: """Dump standard dataclass as dict. Note we use lazy import to prevent bloating other code parts. Parameters ---------- data: dataclass Dataclass Returns ------- dict: Pydantic model serialized to dict """ import dataclasses return dataclasses.asdict(data)
-
Extract raw event from common types used in Powertools
If event cannot be extracted, return received data as is.
Common models:
- Event Source Data Classes (DictWrapper) - Python Dataclasses - Pydantic Models (BaseModel)
Parameters
data
:Any
- Original event, a potential instance of DictWrapper/BaseModel/Dataclass
Notes
Why not using static type for function argument?
DictWrapper would cause a circular import. Pydantic BaseModel could cause a ModuleNotFound or trigger init reflection worsening cold start.
Expand source code
def extract_event_from_common_models(data: Any) -> Dict | Any: """Extract raw event from common types used in Powertools If event cannot be extracted, return received data as is. Common models: - Event Source Data Classes (DictWrapper) - Python Dataclasses - Pydantic Models (BaseModel) Parameters ---------- data : Any Original event, a potential instance of DictWrapper/BaseModel/Dataclass Notes ----- Why not using static type for function argument? DictWrapper would cause a circular import. Pydantic BaseModel could cause a ModuleNotFound or trigger init reflection worsening cold start. """ # Short-circuit most common type first for perf if isinstance(data, dict): return data # Is it an Event Source Data Class? if getattr(data, "raw_event", None): return data.raw_event # Is it a Pydantic Model? if is_pydantic(data): return pydantic_to_dict(data) # Is it a Dataclass? if is_dataclass(data): return dataclass_to_dict(data) # Return as is return data
-
Whether data is a dataclass
Parameters
data
:dataclass
- Dataclass obj
Returns
bool
- Whether it's a Dataclass
Expand source code
def is_dataclass(data) -> bool: """Whether data is a dataclass Parameters ---------- data: dataclass Dataclass obj Returns ------- bool Whether it's a Dataclass """ return getattr(data, "__dataclass_fields__", False)
-
Whether data is a Pydantic model by checking common field available in v1/v2
Parameters
data
:BaseModel
- Pydantic model
Returns
bool
- Whether it's a Pydantic model
Expand source code
def is_pydantic(data) -> bool: """Whether data is a Pydantic model by checking common field available in v1/v2 Parameters ---------- data: BaseModel Pydantic model Returns ------- bool Whether it's a Pydantic model """ return getattr(data, "json", False)
-
Expand source code
def powertools_debug_is_set() -> bool: is_on = strtobool(os.getenv(constants.POWERTOOLS_DEBUG_ENV, "0")) if is_on: warnings.warn("POWERTOOLS_DEBUG environment variable is enabled. Setting logging level to DEBUG.", stacklevel=2) return True return False
-
Expand source code
def powertools_dev_is_set() -> bool: is_on = strtobool(os.getenv(constants.POWERTOOLS_DEV_ENV, "0")) if is_on: warnings.warn( "POWERTOOLS_DEV environment variable is enabled. Increasing verbosity across utilities.", stacklevel=2, ) return True return False
-
Dump Pydantic model v1 and v2 as dict.
Note we use lazy import since Pydantic is an optional dependency.
Parameters
data
:BaseModel
- Pydantic model
Returns
dict:
- Pydantic model serialized to dict
Expand source code
def pydantic_to_dict(data) -> dict: """Dump Pydantic model v1 and v2 as dict. Note we use lazy import since Pydantic is an optional dependency. Parameters ---------- data: BaseModel Pydantic model Returns ------- dict: Pydantic model serialized to dict """ from aws_lambda_powertools.event_handler.openapi.compat import _model_dump return _model_dump(data)
-
Pick explicit choice over env, if available, otherwise return env value received
NOTE: Environment variable should be resolved by the caller.
Parameters
env
:str, Optional
- environment variable actual value
choice
:str|float
, optional- explicit choice
Returns
choice
:str, Optional
- resolved choice as either bool or environment value
Expand source code
def resolve_env_var_choice( env: Optional[str] = None, choice: Optional[Union[str, float]] = None, ) -> Optional[Union[str, float]]: """Pick explicit choice over env, if available, otherwise return env value received NOTE: Environment variable should be resolved by the caller. Parameters ---------- env : str, Optional environment variable actual value choice : str|float, optional explicit choice Returns ------- choice : str, Optional resolved choice as either bool or environment value """ return choice if choice is not None else env
-
Resolve max age value
Expand source code
def resolve_max_age(env: str, choice: Optional[int]) -> int: """Resolve max age value""" return choice if choice is not None else int(env)
-
Pick explicit choice over truthy env value, if available, otherwise return truthy env value
NOTE: Environment variable should be resolved by the caller.
Parameters
env
:str
- environment variable actual value
choice
:bool
- explicit choice
Returns
choice
:str
- resolved choice as either bool or environment value
Expand source code
def resolve_truthy_env_var_choice(env: str, choice: Optional[bool] = None) -> bool: """Pick explicit choice over truthy env value, if available, otherwise return truthy env value NOTE: Environment variable should be resolved by the caller. Parameters ---------- env : str environment variable actual value choice : bool explicit choice Returns ------- choice : str resolved choice as either bool or environment value """ return choice if choice is not None else strtobool(env)
-
Expand source code
def slice_dictionary(data: Dict, chunk_size: int) -> Generator[Dict, None, None]: for _ in range(0, len(data), chunk_size): yield {dict_key: data[dict_key] for dict_key in itertools.islice(data, chunk_size)}
-
Convert a string representation of truth to True or False.
True values are 'y', 'yes', 't', 'true', 'on', and '1'; false values are 'n', 'no', 'f', 'false', 'off', and '0'. Raises ValueError if 'value' is anything else.
note:: Copied from distutils.util.
Expand source code
def strtobool(value: str) -> bool: """Convert a string representation of truth to True or False. True values are 'y', 'yes', 't', 'true', 'on', and '1'; false values are 'n', 'no', 'f', 'false', 'off', and '0'. Raises ValueError if 'value' is anything else. > note:: Copied from distutils.util. """ value = value.lower() if value in ("1", "y", "yes", "t", "true", "on"): return True if value in ("0", "n", "no", "f", "false", "off"): return False raise ValueError(f"invalid truth value {value!r}")