Module aws_lambda_powertools.utilities.parser
Advanced event_parser utility
Expand source code
"""Advanced event_parser utility
"""
from . import envelopes
from .envelopes import BaseEnvelope
from .parser import event_parser, parse
from .pydantic import BaseModel, Field, ValidationError, root_validator, validator
__all__ = [
"event_parser",
"parse",
"envelopes",
"BaseEnvelope",
"BaseModel",
"Field",
"validator",
"root_validator",
"ValidationError",
]
Sub-modules
aws_lambda_powertools.utilities.parser.compat
aws_lambda_powertools.utilities.parser.envelopes
aws_lambda_powertools.utilities.parser.exceptions
aws_lambda_powertools.utilities.parser.models
aws_lambda_powertools.utilities.parser.parser
aws_lambda_powertools.utilities.parser.pydantic
aws_lambda_powertools.utilities.parser.types
-
Generics and other shared types used across parser
Functions
def Field(default: Any = PydanticUndefined, *, default_factory: Optional[Callable[[], Any]] = None, alias: Optional[str] = None, title: Optional[str] = None, description: Optional[str] = None, exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), Any, ForwardRef(None)] = None, include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), Any, ForwardRef(None)] = None, const: Optional[bool] = None, gt: Optional[float] = None, ge: Optional[float] = None, lt: Optional[float] = None, le: Optional[float] = None, multiple_of: Optional[float] = None, allow_inf_nan: Optional[bool] = None, max_digits: Optional[int] = None, decimal_places: Optional[int] = None, min_items: Optional[int] = None, max_items: Optional[int] = None, unique_items: Optional[bool] = None, min_length: Optional[int] = None, max_length: Optional[int] = None, allow_mutation: bool = True, regex: Optional[str] = None, discriminator: Optional[str] = None, repr: bool = True, **extra: Any) ‑> Any
-
Used to provide extra information about a field, either for the model schema or complex validation. Some arguments apply only to number fields (
int
,float
,Decimal
) and some apply only tostr
.:param default: since this is replacing the field’s default, its first argument is used to set the default, use ellipsis (
…
) to indicate the field is required :param default_factory: callable that will be called when a default value is needed for this field If bothdefault
anddefault_factory
are set, an error is raised. :param alias: the public name of the field :param title: can be any string, used in the schema :param description: can be any string, used in the schema :param exclude: exclude this field while dumping. Takes same values as theinclude
andexclude
arguments on the.dict
method. :param include: include this field while dumping. Takes same values as theinclude
andexclude
arguments on the.dict
method. :param const: this field is required and must take it's default value :param gt: only applies to numbers, requires the field to be "greater than". The schema will have anexclusiveMinimum
validation keyword :param ge: only applies to numbers, requires the field to be "greater than or equal to". The schema will have aminimum
validation keyword :param lt: only applies to numbers, requires the field to be "less than". The schema will have anexclusiveMaximum
validation keyword :param le: only applies to numbers, requires the field to be "less than or equal to". The schema will have amaximum
validation keyword :param multiple_of: only applies to numbers, requires the field to be "a multiple of". The schema will have amultipleOf
validation keyword :param allow_inf_nan: only applies to numbers, allows the field to be NaN or infinity (+inf or -inf), which is a valid Python float. Default True, set to False for compatibility with JSON. :param max_digits: only applies to Decimals, requires the field to have a maximum number of digits within the decimal. It does not include a zero before the decimal point or trailing decimal zeroes. :param decimal_places: only applies to Decimals, requires the field to have at most a number of decimal places allowed. It does not include trailing decimal zeroes. :param min_items: only applies to lists, requires the field to have a minimum number of elements. The schema will have aminItems
validation keyword :param max_items: only applies to lists, requires the field to have a maximum number of elements. The schema will have amaxItems
validation keyword :param unique_items: only applies to lists, requires the field not to have duplicated elements. The schema will have auniqueItems
validation keyword :param min_length: only applies to strings, requires the field to have a minimum length. The schema will have aminLength
validation keyword :param max_length: only applies to strings, requires the field to have a maximum length. The schema will have amaxLength
validation keyword :param allow_mutation: a boolean which defaults to True. When False, the field raises a TypeError if the field is assigned on an instance. The BaseModel Config must set validate_assignment to True :param regex: only applies to strings, requires the field match against a regular expression pattern string. The schema will have apattern
validation keyword :param discriminator: only useful with a (discriminated a.k.a. tagged)Union
of sub models with a common field. Thediscriminator
is the name of this common field to shorten validation and improve generated schema :param repr: show this field in the representation :param **extra: any additional keyword arguments will be added as is to the schemaExpand source code
def Field( default: Any = Undefined, *, default_factory: Optional[NoArgAnyCallable] = None, alias: Optional[str] = None, title: Optional[str] = None, description: Optional[str] = None, exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny', Any]] = None, include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny', Any]] = None, const: Optional[bool] = None, gt: Optional[float] = None, ge: Optional[float] = None, lt: Optional[float] = None, le: Optional[float] = None, multiple_of: Optional[float] = None, allow_inf_nan: Optional[bool] = None, max_digits: Optional[int] = None, decimal_places: Optional[int] = None, min_items: Optional[int] = None, max_items: Optional[int] = None, unique_items: Optional[bool] = None, min_length: Optional[int] = None, max_length: Optional[int] = None, allow_mutation: bool = True, regex: Optional[str] = None, discriminator: Optional[str] = None, repr: bool = True, **extra: Any, ) -> Any: """ Used to provide extra information about a field, either for the model schema or complex validation. Some arguments apply only to number fields (``int``, ``float``, ``Decimal``) and some apply only to ``str``. :param default: since this is replacing the field’s default, its first argument is used to set the default, use ellipsis (``...``) to indicate the field is required :param default_factory: callable that will be called when a default value is needed for this field If both `default` and `default_factory` are set, an error is raised. :param alias: the public name of the field :param title: can be any string, used in the schema :param description: can be any string, used in the schema :param exclude: exclude this field while dumping. Takes same values as the ``include`` and ``exclude`` arguments on the ``.dict`` method. :param include: include this field while dumping. Takes same values as the ``include`` and ``exclude`` arguments on the ``.dict`` method. :param const: this field is required and *must* take it's default value :param gt: only applies to numbers, requires the field to be "greater than". The schema will have an ``exclusiveMinimum`` validation keyword :param ge: only applies to numbers, requires the field to be "greater than or equal to". The schema will have a ``minimum`` validation keyword :param lt: only applies to numbers, requires the field to be "less than". The schema will have an ``exclusiveMaximum`` validation keyword :param le: only applies to numbers, requires the field to be "less than or equal to". The schema will have a ``maximum`` validation keyword :param multiple_of: only applies to numbers, requires the field to be "a multiple of". The schema will have a ``multipleOf`` validation keyword :param allow_inf_nan: only applies to numbers, allows the field to be NaN or infinity (+inf or -inf), which is a valid Python float. Default True, set to False for compatibility with JSON. :param max_digits: only applies to Decimals, requires the field to have a maximum number of digits within the decimal. It does not include a zero before the decimal point or trailing decimal zeroes. :param decimal_places: only applies to Decimals, requires the field to have at most a number of decimal places allowed. It does not include trailing decimal zeroes. :param min_items: only applies to lists, requires the field to have a minimum number of elements. The schema will have a ``minItems`` validation keyword :param max_items: only applies to lists, requires the field to have a maximum number of elements. The schema will have a ``maxItems`` validation keyword :param unique_items: only applies to lists, requires the field not to have duplicated elements. The schema will have a ``uniqueItems`` validation keyword :param min_length: only applies to strings, requires the field to have a minimum length. The schema will have a ``minLength`` validation keyword :param max_length: only applies to strings, requires the field to have a maximum length. The schema will have a ``maxLength`` validation keyword :param allow_mutation: a boolean which defaults to True. When False, the field raises a TypeError if the field is assigned on an instance. The BaseModel Config must set validate_assignment to True :param regex: only applies to strings, requires the field match against a regular expression pattern string. The schema will have a ``pattern`` validation keyword :param discriminator: only useful with a (discriminated a.k.a. tagged) `Union` of sub models with a common field. The `discriminator` is the name of this common field to shorten validation and improve generated schema :param repr: show this field in the representation :param **extra: any additional keyword arguments will be added as is to the schema """ field_info = FieldInfo( default, default_factory=default_factory, alias=alias, title=title, description=description, exclude=exclude, include=include, const=const, gt=gt, ge=ge, lt=lt, le=le, multiple_of=multiple_of, allow_inf_nan=allow_inf_nan, max_digits=max_digits, decimal_places=decimal_places, min_items=min_items, max_items=max_items, unique_items=unique_items, min_length=min_length, max_length=max_length, allow_mutation=allow_mutation, regex=regex, discriminator=discriminator, repr=repr, **extra, ) field_info._validate() return field_info
def event_parser(handler: Callable[..., ~EventParserReturnType], event: Dict[str, Any], context: LambdaContext, model: Optional[Type[~Model]] = None, envelope: Optional[Type[~Envelope]] = None, **kwargs: Any) ‑> ~EventParserReturnType
-
Lambda handler decorator to parse & validate events using Pydantic models
It requires a model that implements Pydantic BaseModel to parse & validate the event.
When an envelope is given, it'll use the following logic:
- Parse the event against the envelope model first e.g. EnvelopeModel(**event)
- Envelope will extract a given key to be parsed against the model e.g. event.detail
This is useful when you need to confirm event wrapper structure, and b) selectively extract a portion of your payload for parsing & validation.
NOTE: If envelope is omitted, the complete event is parsed to match the model parameter BaseModel definition.
Example
Lambda handler decorator to parse & validate event
class Order(BaseModel): id: int description: str ... @event_parser(model=Order) def handler(event: Order, context: LambdaContext): ...
Lambda handler decorator to parse & validate event - using built-in envelope
class Order(BaseModel): id: int description: str ... @event_parser(model=Order, envelope=envelopes.EVENTBRIDGE) def handler(event: Order, context: LambdaContext): ...
Parameters
handler
:Callable
- Method to annotate on
event
:Dict
- Lambda event to be parsed & validated
context
:LambdaContext
- Lambda context object
model
:Model
- Your data model that will replace the event.
envelope
:Envelope
- Optional envelope to extract the model from
Raises
ValidationError
- When input event does not conform with model provided
InvalidModelTypeError
- When model given does not implement BaseModel or is not provided
InvalidEnvelopeError
- When envelope given does not implement BaseEnvelope
Expand source code
@lambda_handler_decorator def event_parser( handler: Callable[..., EventParserReturnType], event: Dict[str, Any], context: LambdaContext, model: Optional[Type[Model]] = None, envelope: Optional[Type[Envelope]] = None, **kwargs: Any, ) -> EventParserReturnType: """Lambda handler decorator to parse & validate events using Pydantic models It requires a model that implements Pydantic BaseModel to parse & validate the event. When an envelope is given, it'll use the following logic: 1. Parse the event against the envelope model first e.g. EnvelopeModel(**event) 2. Envelope will extract a given key to be parsed against the model e.g. event.detail This is useful when you need to confirm event wrapper structure, and b) selectively extract a portion of your payload for parsing & validation. NOTE: If envelope is omitted, the complete event is parsed to match the model parameter BaseModel definition. Example ------- **Lambda handler decorator to parse & validate event** class Order(BaseModel): id: int description: str ... @event_parser(model=Order) def handler(event: Order, context: LambdaContext): ... **Lambda handler decorator to parse & validate event - using built-in envelope** class Order(BaseModel): id: int description: str ... @event_parser(model=Order, envelope=envelopes.EVENTBRIDGE) def handler(event: Order, context: LambdaContext): ... Parameters ---------- handler: Callable Method to annotate on event: Dict Lambda event to be parsed & validated context: LambdaContext Lambda context object model: Model Your data model that will replace the event. envelope: Envelope Optional envelope to extract the model from Raises ------ ValidationError When input event does not conform with model provided InvalidModelTypeError When model given does not implement BaseModel or is not provided InvalidEnvelopeError When envelope given does not implement BaseEnvelope """ # The first parameter of a Lambda function is always the event # This line get the model informed in the event_parser function # or the first parameter of the function by using typing.get_type_hints type_hints = typing.get_type_hints(handler) model = model or (list(type_hints.values())[0] if type_hints else None) if model is None: raise InvalidModelTypeError( "The model must be provided either as the `model` argument to `event_parser`" "or as the type hint of `event` in the handler that it wraps", ) if envelope: parsed_event = parse(event=event, model=model, envelope=envelope) else: parsed_event = parse(event=event, model=model) logger.debug(f"Calling handler {handler.__name__}") return handler(parsed_event, context, **kwargs)
def parse(event: Dict[str, Any], model: Type[~Model], envelope: Optional[Type[~Envelope]] = None)
-
Standalone function to parse & validate events using Pydantic models
Typically used when you need fine-grained control over error handling compared to event_parser decorator.
Example
Lambda handler decorator to parse & validate event
from aws_lambda_powertools.utilities.parser import ValidationError class Order(BaseModel): id: int description: str ... def handler(event: Order, context: LambdaContext): try: parse(model=Order) except ValidationError: ...
Lambda handler decorator to parse & validate event - using built-in envelope
class Order(BaseModel): id: int description: str ... def handler(event: Order, context: LambdaContext): try: parse(model=Order, envelope=envelopes.EVENTBRIDGE) except ValidationError: ...
Parameters
event
:Dict
- Lambda event to be parsed & validated
model
:Model
- Your data model that will replace the event
envelope
:Envelope
- Optional envelope to extract the model from
Raises
ValidationError
- When input event does not conform with model provided
InvalidModelTypeError
- When model given does not implement BaseModel
InvalidEnvelopeError
- When envelope given does not implement BaseEnvelope
Expand source code
def parse(event: Dict[str, Any], model: Type[Model], envelope: Optional[Type[Envelope]] = None): """Standalone function to parse & validate events using Pydantic models Typically used when you need fine-grained control over error handling compared to event_parser decorator. Example ------- **Lambda handler decorator to parse & validate event** from aws_lambda_powertools.utilities.parser import ValidationError class Order(BaseModel): id: int description: str ... def handler(event: Order, context: LambdaContext): try: parse(model=Order) except ValidationError: ... **Lambda handler decorator to parse & validate event - using built-in envelope** class Order(BaseModel): id: int description: str ... def handler(event: Order, context: LambdaContext): try: parse(model=Order, envelope=envelopes.EVENTBRIDGE) except ValidationError: ... Parameters ---------- event: Dict Lambda event to be parsed & validated model: Model Your data model that will replace the event envelope: Envelope Optional envelope to extract the model from Raises ------ ValidationError When input event does not conform with model provided InvalidModelTypeError When model given does not implement BaseModel InvalidEnvelopeError When envelope given does not implement BaseEnvelope """ if envelope and callable(envelope): try: logger.debug(f"Parsing and validating event model with envelope={envelope}") return envelope().parse(data=event, model=model) except AttributeError as exc: raise InvalidEnvelopeError( f"Error: {str(exc)}. Please ensure that both the Input model and the Envelope inherits from BaseModel,\n" # noqa E501 "and your payload adheres to the specified Input model structure.\n" f"Envelope={envelope}\nModel={model}", ) try: disable_pydantic_v2_warning() logger.debug("Parsing and validating event model; no envelope used") if isinstance(event, str): return model.parse_raw(event) return model.parse_obj(event) except AttributeError as exc: raise InvalidModelTypeError( f"Error: {str(exc)}. Please ensure the Input model inherits from BaseModel,\n" "and your payload adheres to the specified Input model structure.\n" f"Model={model}", )
def root_validator(*, pre: bool = False, allow_reuse: bool = False, skip_on_failure: bool = False) ‑> Union[AnyClassMethod, Callable[[Callable[..., Any]], AnyClassMethod]]
-
Decorate methods on a model indicating that they should be used to validate (and perhaps modify) data either before or after standard model parsing/validation is performed.
Expand source code
def root_validator( _func: Optional[AnyCallable] = None, *, pre: bool = False, allow_reuse: bool = False, skip_on_failure: bool = False ) -> Union['AnyClassMethod', Callable[[AnyCallable], 'AnyClassMethod']]: """ Decorate methods on a model indicating that they should be used to validate (and perhaps modify) data either before or after standard model parsing/validation is performed. """ if _func: f_cls = _prepare_validator(_func, allow_reuse) setattr( f_cls, ROOT_VALIDATOR_CONFIG_KEY, Validator(func=f_cls.__func__, pre=pre, skip_on_failure=skip_on_failure) ) return f_cls def dec(f: AnyCallable) -> 'AnyClassMethod': f_cls = _prepare_validator(f, allow_reuse) setattr( f_cls, ROOT_VALIDATOR_CONFIG_KEY, Validator(func=f_cls.__func__, pre=pre, skip_on_failure=skip_on_failure) ) return f_cls return dec
def validator(*fields: str, pre: bool = False, each_item: bool = False, always: bool = False, check_fields: bool = True, whole: Optional[bool] = None, allow_reuse: bool = False) ‑> Callable[[Callable[..., Any]], AnyClassMethod]
-
Decorate methods on the class indicating that they should be used to validate fields :param fields: which field(s) the method should be called on :param pre: whether or not this validator should be called before the standard validators (else after) :param each_item: for complex objects (sets, lists etc.) whether to validate individual elements rather than the whole object :param always: whether this method and other validators should be called even if the value is missing :param check_fields: whether to check that the fields actually exist on the model :param allow_reuse: whether to track and raise an error if another validator refers to the decorated function
Expand source code
def validator( *fields: str, pre: bool = False, each_item: bool = False, always: bool = False, check_fields: bool = True, whole: Optional[bool] = None, allow_reuse: bool = False, ) -> Callable[[AnyCallable], 'AnyClassMethod']: """ Decorate methods on the class indicating that they should be used to validate fields :param fields: which field(s) the method should be called on :param pre: whether or not this validator should be called before the standard validators (else after) :param each_item: for complex objects (sets, lists etc.) whether to validate individual elements rather than the whole object :param always: whether this method and other validators should be called even if the value is missing :param check_fields: whether to check that the fields actually exist on the model :param allow_reuse: whether to track and raise an error if another validator refers to the decorated function """ if not fields: raise ConfigError('validator with no fields specified') elif isinstance(fields[0], FunctionType): raise ConfigError( "validators should be used with fields and keyword arguments, not bare. " # noqa: Q000 "E.g. usage should be `@validator('<field_name>', ...)`" ) elif not all(isinstance(field, str) for field in fields): raise ConfigError( "validator fields should be passed as separate string args. " # noqa: Q000 "E.g. usage should be `@validator('<field_name_1>', '<field_name_2>', ...)`" ) if whole is not None: warnings.warn( 'The "whole" keyword argument is deprecated, use "each_item" (inverse meaning, default False) instead', DeprecationWarning, ) assert each_item is False, '"each_item" and "whole" conflict, remove "whole"' each_item = not whole def dec(f: AnyCallable) -> 'AnyClassMethod': f_cls = _prepare_validator(f, allow_reuse) setattr( f_cls, VALIDATOR_CONFIG_KEY, ( fields, Validator(func=f_cls.__func__, pre=pre, each_item=each_item, always=always, check_fields=check_fields), ), ) return f_cls return dec
Classes
class BaseEnvelope
-
ABC implementation for creating a supported Envelope
Expand source code
class BaseEnvelope(ABC): """ABC implementation for creating a supported Envelope""" @staticmethod def _parse(data: Optional[Union[Dict[str, Any], Any]], model: Type[Model]) -> Union[Model, None]: """Parses envelope data against model provided Parameters ---------- data : Dict Data to be parsed and validated model : Type[Model] Data model to parse and validate data against Returns ------- Any Parsed data """ disable_pydantic_v2_warning() if data is None: logger.debug("Skipping parsing as event is None") return data logger.debug("parsing event against model") if isinstance(data, str): logger.debug("parsing event as string") return model.parse_raw(data) return model.parse_obj(data) @abstractmethod def parse(self, data: Optional[Union[Dict[str, Any], Any]], model: Type[Model]): """Implementation to parse data against envelope model, then against the data model NOTE: Call `_parse` method to fully parse data with model provided. Example ------- **EventBridge envelope implementation example** def parse(...): # 1. parses data against envelope model parsed_envelope = EventBridgeModel(**data) # 2. parses portion of data within the envelope against model return self._parse(data=parsed_envelope.detail, model=data_model) """ return NotImplemented # pragma: no cover
Ancestors
- abc.ABC
Subclasses
- ApiGatewayEnvelope
- ApiGatewayV2Envelope
- BedrockAgentEnvelope
- CloudWatchLogsEnvelope
- DynamoDBStreamEnvelope
- EventBridgeEnvelope
- KafkaEnvelope
- KinesisDataStreamEnvelope
- KinesisFirehoseEnvelope
- LambdaFunctionUrlEnvelope
- SnsEnvelope
- SnsSqsEnvelope
- SqsEnvelope
- VpcLatticeEnvelope
- VpcLatticeV2Envelope
Methods
def parse(self, data: Union[Dict[str, Any], Any, ForwardRef(None)], model: Type[~Model])
-
Implementation to parse data against envelope model, then against the data model
NOTE: Call
_parse
method to fully parse data with model provided.Example
EventBridge envelope implementation example
def parse(…): # 1. parses data against envelope model parsed_envelope = EventBridgeModel(**data)
# 2. parses portion of data within the envelope against model return self._parse(data=parsed_envelope.detail, model=data_model)
Expand source code
@abstractmethod def parse(self, data: Optional[Union[Dict[str, Any], Any]], model: Type[Model]): """Implementation to parse data against envelope model, then against the data model NOTE: Call `_parse` method to fully parse data with model provided. Example ------- **EventBridge envelope implementation example** def parse(...): # 1. parses data against envelope model parsed_envelope = EventBridgeModel(**data) # 2. parses portion of data within the envelope against model return self._parse(data=parsed_envelope.detail, model=data_model) """ return NotImplemented # pragma: no cover
class BaseModel (**data: Any)
-
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
Expand source code
class BaseModel(Representation, metaclass=ModelMetaclass): if TYPE_CHECKING: # populated by the metaclass, defined here to help IDEs only __fields__: ClassVar[Dict[str, ModelField]] = {} __include_fields__: ClassVar[Optional[Mapping[str, Any]]] = None __exclude_fields__: ClassVar[Optional[Mapping[str, Any]]] = None __validators__: ClassVar[Dict[str, AnyCallable]] = {} __pre_root_validators__: ClassVar[List[AnyCallable]] __post_root_validators__: ClassVar[List[Tuple[bool, AnyCallable]]] __config__: ClassVar[Type[BaseConfig]] = BaseConfig __json_encoder__: ClassVar[Callable[[Any], Any]] = lambda x: x __schema_cache__: ClassVar['DictAny'] = {} __custom_root_type__: ClassVar[bool] = False __signature__: ClassVar['Signature'] __private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] __class_vars__: ClassVar[SetStr] __fields_set__: ClassVar[SetStr] = set() Config = BaseConfig __slots__ = ('__dict__', '__fields_set__') __doc__ = '' # Null out the Representation docstring def __init__(__pydantic_self__, **data: Any) -> None: """ Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. """ # Uses something other than `self` the first arg to allow "self" as a settable attribute values, fields_set, validation_error = validate_model(__pydantic_self__.__class__, data) if validation_error: raise validation_error try: object_setattr(__pydantic_self__, '__dict__', values) except TypeError as e: raise TypeError( 'Model values must be a dict; you may not have returned a dictionary from a root validator' ) from e object_setattr(__pydantic_self__, '__fields_set__', fields_set) __pydantic_self__._init_private_attributes() @no_type_check def __setattr__(self, name, value): # noqa: C901 (ignore complexity) if name in self.__private_attributes__ or name in DUNDER_ATTRIBUTES: return object_setattr(self, name, value) if self.__config__.extra is not Extra.allow and name not in self.__fields__: raise ValueError(f'"{self.__class__.__name__}" object has no field "{name}"') elif not self.__config__.allow_mutation or self.__config__.frozen: raise TypeError(f'"{self.__class__.__name__}" is immutable and does not support item assignment') elif name in self.__fields__ and self.__fields__[name].final: raise TypeError( f'"{self.__class__.__name__}" object "{name}" field is final and does not support reassignment' ) elif self.__config__.validate_assignment: new_values = {**self.__dict__, name: value} for validator in self.__pre_root_validators__: try: new_values = validator(self.__class__, new_values) except (ValueError, TypeError, AssertionError) as exc: raise ValidationError([ErrorWrapper(exc, loc=ROOT_KEY)], self.__class__) known_field = self.__fields__.get(name, None) if known_field: # We want to # - make sure validators are called without the current value for this field inside `values` # - keep other values (e.g. submodels) untouched (using `BaseModel.dict()` will change them into dicts) # - keep the order of the fields if not known_field.field_info.allow_mutation: raise TypeError(f'"{known_field.name}" has allow_mutation set to False and cannot be assigned') dict_without_original_value = {k: v for k, v in self.__dict__.items() if k != name} value, error_ = known_field.validate(value, dict_without_original_value, loc=name, cls=self.__class__) if error_: raise ValidationError([error_], self.__class__) else: new_values[name] = value errors = [] for skip_on_failure, validator in self.__post_root_validators__: if skip_on_failure and errors: continue try: new_values = validator(self.__class__, new_values) except (ValueError, TypeError, AssertionError) as exc: errors.append(ErrorWrapper(exc, loc=ROOT_KEY)) if errors: raise ValidationError(errors, self.__class__) # update the whole __dict__ as other values than just `value` # may be changed (e.g. with `root_validator`) object_setattr(self, '__dict__', new_values) else: self.__dict__[name] = value self.__fields_set__.add(name) def __getstate__(self) -> 'DictAny': private_attrs = ((k, getattr(self, k, Undefined)) for k in self.__private_attributes__) return { '__dict__': self.__dict__, '__fields_set__': self.__fields_set__, '__private_attribute_values__': {k: v for k, v in private_attrs if v is not Undefined}, } def __setstate__(self, state: 'DictAny') -> None: object_setattr(self, '__dict__', state['__dict__']) object_setattr(self, '__fields_set__', state['__fields_set__']) for name, value in state.get('__private_attribute_values__', {}).items(): object_setattr(self, name, value) def _init_private_attributes(self) -> None: for name, private_attr in self.__private_attributes__.items(): default = private_attr.get_default() if default is not Undefined: object_setattr(self, name, default) def dict( self, *, include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, ) -> 'DictStrAny': """ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. """ if skip_defaults is not None: warnings.warn( f'{self.__class__.__name__}.dict(): "skip_defaults" is deprecated and replaced by "exclude_unset"', DeprecationWarning, ) exclude_unset = skip_defaults return dict( self._iter( to_dict=True, by_alias=by_alias, include=include, exclude=exclude, exclude_unset=exclude_unset, exclude_defaults=exclude_defaults, exclude_none=exclude_none, ) ) def json( self, *, include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any, ) -> str: """ Generate a JSON representation of the model, `include` and `exclude` arguments as per `dict()`. `encoder` is an optional function to supply as `default` to json.dumps(), other arguments as per `json.dumps()`. """ if skip_defaults is not None: warnings.warn( f'{self.__class__.__name__}.json(): "skip_defaults" is deprecated and replaced by "exclude_unset"', DeprecationWarning, ) exclude_unset = skip_defaults encoder = cast(Callable[[Any], Any], encoder or self.__json_encoder__) # We don't directly call `self.dict()`, which does exactly this with `to_dict=True` # because we want to be able to keep raw `BaseModel` instances and not as `dict`. # This allows users to write custom JSON encoders for given `BaseModel` classes. data = dict( self._iter( to_dict=models_as_dict, by_alias=by_alias, include=include, exclude=exclude, exclude_unset=exclude_unset, exclude_defaults=exclude_defaults, exclude_none=exclude_none, ) ) if self.__custom_root_type__: data = data[ROOT_KEY] return self.__config__.json_dumps(data, default=encoder, **dumps_kwargs) @classmethod def _enforce_dict_if_root(cls, obj: Any) -> Any: if cls.__custom_root_type__ and ( not (isinstance(obj, dict) and obj.keys() == {ROOT_KEY}) and not (isinstance(obj, BaseModel) and obj.__fields__.keys() == {ROOT_KEY}) or cls.__fields__[ROOT_KEY].shape in MAPPING_LIKE_SHAPES ): return {ROOT_KEY: obj} else: return obj @classmethod def parse_obj(cls: Type['Model'], obj: Any) -> 'Model': obj = cls._enforce_dict_if_root(obj) if not isinstance(obj, dict): try: obj = dict(obj) except (TypeError, ValueError) as e: exc = TypeError(f'{cls.__name__} expected dict not {obj.__class__.__name__}') raise ValidationError([ErrorWrapper(exc, loc=ROOT_KEY)], cls) from e return cls(**obj) @classmethod def parse_raw( cls: Type['Model'], b: StrBytes, *, content_type: str = None, encoding: str = 'utf8', proto: Protocol = None, allow_pickle: bool = False, ) -> 'Model': try: obj = load_str_bytes( b, proto=proto, content_type=content_type, encoding=encoding, allow_pickle=allow_pickle, json_loads=cls.__config__.json_loads, ) except (ValueError, TypeError, UnicodeDecodeError) as e: raise ValidationError([ErrorWrapper(e, loc=ROOT_KEY)], cls) return cls.parse_obj(obj) @classmethod def parse_file( cls: Type['Model'], path: Union[str, Path], *, content_type: str = None, encoding: str = 'utf8', proto: Protocol = None, allow_pickle: bool = False, ) -> 'Model': obj = load_file( path, proto=proto, content_type=content_type, encoding=encoding, allow_pickle=allow_pickle, json_loads=cls.__config__.json_loads, ) return cls.parse_obj(obj) @classmethod def from_orm(cls: Type['Model'], obj: Any) -> 'Model': if not cls.__config__.orm_mode: raise ConfigError('You must have the config attribute orm_mode=True to use from_orm') obj = {ROOT_KEY: obj} if cls.__custom_root_type__ else cls._decompose_class(obj) m = cls.__new__(cls) values, fields_set, validation_error = validate_model(cls, obj) if validation_error: raise validation_error object_setattr(m, '__dict__', values) object_setattr(m, '__fields_set__', fields_set) m._init_private_attributes() return m @classmethod def construct(cls: Type['Model'], _fields_set: Optional['SetStr'] = None, **values: Any) -> 'Model': """ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if `Config.extra = 'allow'` was set since it adds all passed values """ m = cls.__new__(cls) fields_values: Dict[str, Any] = {} for name, field in cls.__fields__.items(): if field.alt_alias and field.alias in values: fields_values[name] = values[field.alias] elif name in values: fields_values[name] = values[name] elif not field.required: fields_values[name] = field.get_default() fields_values.update(values) object_setattr(m, '__dict__', fields_values) if _fields_set is None: _fields_set = set(values.keys()) object_setattr(m, '__fields_set__', _fields_set) m._init_private_attributes() return m def _copy_and_set_values(self: 'Model', values: 'DictStrAny', fields_set: 'SetStr', *, deep: bool) -> 'Model': if deep: # chances of having empty dict here are quite low for using smart_deepcopy values = deepcopy(values) cls = self.__class__ m = cls.__new__(cls) object_setattr(m, '__dict__', values) object_setattr(m, '__fields_set__', fields_set) for name in self.__private_attributes__: value = getattr(self, name, Undefined) if value is not Undefined: if deep: value = deepcopy(value) object_setattr(m, name, value) return m def copy( self: 'Model', *, include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, update: Optional['DictStrAny'] = None, deep: bool = False, ) -> 'Model': """ Duplicate a model, optionally choose which fields to include, exclude and change. :param include: fields to include in new model :param exclude: fields to exclude from new model, as with values this takes precedence over include :param update: values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data :param deep: set to `True` to make a deep copy of the model :return: new model instance """ values = dict( self._iter(to_dict=False, by_alias=False, include=include, exclude=exclude, exclude_unset=False), **(update or {}), ) # new `__fields_set__` can have unset optional fields with a set value in `update` kwarg if update: fields_set = self.__fields_set__ | update.keys() else: fields_set = set(self.__fields_set__) return self._copy_and_set_values(values, fields_set, deep=deep) @classmethod def schema(cls, by_alias: bool = True, ref_template: str = default_ref_template) -> 'DictStrAny': cached = cls.__schema_cache__.get((by_alias, ref_template)) if cached is not None: return cached s = model_schema(cls, by_alias=by_alias, ref_template=ref_template) cls.__schema_cache__[(by_alias, ref_template)] = s return s @classmethod def schema_json( cls, *, by_alias: bool = True, ref_template: str = default_ref_template, **dumps_kwargs: Any ) -> str: from .json import pydantic_encoder return cls.__config__.json_dumps( cls.schema(by_alias=by_alias, ref_template=ref_template), default=pydantic_encoder, **dumps_kwargs ) @classmethod def __get_validators__(cls) -> 'CallableGenerator': yield cls.validate @classmethod def validate(cls: Type['Model'], value: Any) -> 'Model': if isinstance(value, cls): copy_on_model_validation = cls.__config__.copy_on_model_validation # whether to deep or shallow copy the model on validation, None means do not copy deep_copy: Optional[bool] = None if copy_on_model_validation not in {'deep', 'shallow', 'none'}: # Warn about deprecated behavior warnings.warn( "`copy_on_model_validation` should be a string: 'deep', 'shallow' or 'none'", DeprecationWarning ) if copy_on_model_validation: deep_copy = False if copy_on_model_validation == 'shallow': # shallow copy deep_copy = False elif copy_on_model_validation == 'deep': # deep copy deep_copy = True if deep_copy is None: return value else: return value._copy_and_set_values(value.__dict__, value.__fields_set__, deep=deep_copy) value = cls._enforce_dict_if_root(value) if isinstance(value, dict): return cls(**value) elif cls.__config__.orm_mode: return cls.from_orm(value) else: try: value_as_dict = dict(value) except (TypeError, ValueError) as e: raise DictError() from e return cls(**value_as_dict) @classmethod def _decompose_class(cls: Type['Model'], obj: Any) -> GetterDict: if isinstance(obj, GetterDict): return obj return cls.__config__.getter_dict(obj) @classmethod @no_type_check def _get_value( cls, v: Any, to_dict: bool, by_alias: bool, include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']], exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']], exclude_unset: bool, exclude_defaults: bool, exclude_none: bool, ) -> Any: if isinstance(v, BaseModel): if to_dict: v_dict = v.dict( by_alias=by_alias, exclude_unset=exclude_unset, exclude_defaults=exclude_defaults, include=include, exclude=exclude, exclude_none=exclude_none, ) if ROOT_KEY in v_dict: return v_dict[ROOT_KEY] return v_dict else: return v.copy(include=include, exclude=exclude) value_exclude = ValueItems(v, exclude) if exclude else None value_include = ValueItems(v, include) if include else None if isinstance(v, dict): return { k_: cls._get_value( v_, to_dict=to_dict, by_alias=by_alias, exclude_unset=exclude_unset, exclude_defaults=exclude_defaults, include=value_include and value_include.for_element(k_), exclude=value_exclude and value_exclude.for_element(k_), exclude_none=exclude_none, ) for k_, v_ in v.items() if (not value_exclude or not value_exclude.is_excluded(k_)) and (not value_include or value_include.is_included(k_)) } elif sequence_like(v): seq_args = ( cls._get_value( v_, to_dict=to_dict, by_alias=by_alias, exclude_unset=exclude_unset, exclude_defaults=exclude_defaults, include=value_include and value_include.for_element(i), exclude=value_exclude and value_exclude.for_element(i), exclude_none=exclude_none, ) for i, v_ in enumerate(v) if (not value_exclude or not value_exclude.is_excluded(i)) and (not value_include or value_include.is_included(i)) ) return v.__class__(*seq_args) if is_namedtuple(v.__class__) else v.__class__(seq_args) elif isinstance(v, Enum) and getattr(cls.Config, 'use_enum_values', False): return v.value else: return v @classmethod def __try_update_forward_refs__(cls, **localns: Any) -> None: """ Same as update_forward_refs but will not raise exception when forward references are not defined. """ update_model_forward_refs(cls, cls.__fields__.values(), cls.__config__.json_encoders, localns, (NameError,)) @classmethod def update_forward_refs(cls, **localns: Any) -> None: """ Try to update ForwardRefs on fields based on this Model, globalns and localns. """ update_model_forward_refs(cls, cls.__fields__.values(), cls.__config__.json_encoders, localns) def __iter__(self) -> 'TupleGenerator': """ so `dict(model)` works """ yield from self.__dict__.items() def _iter( self, to_dict: bool = False, by_alias: bool = False, include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, ) -> 'TupleGenerator': # Merge field set excludes with explicit exclude parameter with explicit overriding field set options. # The extra "is not None" guards are not logically necessary but optimizes performance for the simple case. if exclude is not None or self.__exclude_fields__ is not None: exclude = ValueItems.merge(self.__exclude_fields__, exclude) if include is not None or self.__include_fields__ is not None: include = ValueItems.merge(self.__include_fields__, include, intersect=True) allowed_keys = self._calculate_keys( include=include, exclude=exclude, exclude_unset=exclude_unset # type: ignore ) if allowed_keys is None and not (to_dict or by_alias or exclude_unset or exclude_defaults or exclude_none): # huge boost for plain _iter() yield from self.__dict__.items() return value_exclude = ValueItems(self, exclude) if exclude is not None else None value_include = ValueItems(self, include) if include is not None else None for field_key, v in self.__dict__.items(): if (allowed_keys is not None and field_key not in allowed_keys) or (exclude_none and v is None): continue if exclude_defaults: model_field = self.__fields__.get(field_key) if not getattr(model_field, 'required', True) and getattr(model_field, 'default', _missing) == v: continue if by_alias and field_key in self.__fields__: dict_key = self.__fields__[field_key].alias else: dict_key = field_key if to_dict or value_include or value_exclude: v = self._get_value( v, to_dict=to_dict, by_alias=by_alias, include=value_include and value_include.for_element(field_key), exclude=value_exclude and value_exclude.for_element(field_key), exclude_unset=exclude_unset, exclude_defaults=exclude_defaults, exclude_none=exclude_none, ) yield dict_key, v def _calculate_keys( self, include: Optional['MappingIntStrAny'], exclude: Optional['MappingIntStrAny'], exclude_unset: bool, update: Optional['DictStrAny'] = None, ) -> Optional[AbstractSet[str]]: if include is None and exclude is None and exclude_unset is False: return None keys: AbstractSet[str] if exclude_unset: keys = self.__fields_set__.copy() else: keys = self.__dict__.keys() if include is not None: keys &= include.keys() if update: keys -= update.keys() if exclude: keys -= {k for k, v in exclude.items() if ValueItems.is_true(v)} return keys def __eq__(self, other: Any) -> bool: if isinstance(other, BaseModel): return self.dict() == other.dict() else: return self.dict() == other def __repr_args__(self) -> 'ReprArgs': return [ (k, v) for k, v in self.__dict__.items() if k not in DUNDER_ATTRIBUTES and (k not in self.__fields__ or self.__fields__[k].field_info.repr) ]
Ancestors
- pydantic.utils.Representation
Subclasses
- Components
- Contact
- Discriminator
- Encoding
- Example
- ExternalDocumentation
- Info
- License
- Link
- MediaType
- OAuthFlow
- OAuthFlows
- OpenAPI
- Operation
- ParameterBase
- PathItem
- Reference
- RequestBody
- Response
- Schema
- SecurityBase
- Server
- ServerVariable
- Tag
- XML
- AlbModel
- AlbRequestContext
- AlbRequestContextData
- APIGatewayEventAuthorizer
- APIGatewayEventIdentity
- APIGatewayEventRequestContext
- APIGatewayProxyEventModel
- ApiGatewayUserCert
- ApiGatewayUserCertValidity
- APIGatewayProxyEventV2Model
- RequestContextV2
- RequestContextV2Authorizer
- RequestContextV2AuthorizerIam
- RequestContextV2AuthorizerIamCognito
- RequestContextV2AuthorizerJwt
- RequestContextV2Http
- BedrockAgentEventModel
- BedrockAgentModel
- BedrockAgentPropertyModel
- BedrockAgentRequestBodyModel
- BedrockAgentRequestMediaModel
- CloudFormationCustomResourceBaseModel
- CloudWatchLogsData
- CloudWatchLogsDecode
- CloudWatchLogsLogEvent
- CloudWatchLogsModel
- DynamoDBStreamChangedRecordModel
- DynamoDBStreamModel
- DynamoDBStreamRecordModel
- UserIdentity
- EventBridgeModel
- KafkaBaseEventModel
- KafkaRecordModel
- KinesisDataStreamModel
- KinesisDataStreamRecord
- KinesisDataStreamRecordPayload
- KinesisFirehoseModel
- KinesisFirehoseRecord
- KinesisFirehoseRecordMetadata
- KinesisFirehoseSqsModel
- KinesisFirehoseSqsRecord
- S3Bucket
- S3EventNotificationEventBridgeBucketModel
- S3EventNotificationEventBridgeDetailModel
- S3EventNotificationObjectModel
- S3EventRecordGlacierEventData
- S3EventRecordGlacierRestoreEventData
- S3Identity
- S3Message
- S3Model
- S3Object
- S3OwnerIdentify
- S3RecordModel
- S3RequestParameters
- S3ResponseElements
- S3BatchOperationJobModel
- S3BatchOperationModel
- S3BatchOperationTaskModel
- S3ObjectConfiguration
- S3ObjectContext
- S3ObjectLambdaEvent
- S3ObjectSessionAttributes
- S3ObjectSessionContext
- S3ObjectSessionIssuer
- S3ObjectUserIdentity
- S3ObjectUserRequest
- SesMail
- SesMailCommonHeaders
- SesMailHeaders
- SesMessage
- SesModel
- SesReceipt
- SesReceiptAction
- SesReceiptVerdict
- SesRecordModel
- SnsModel
- SnsMsgAttributeModel
- SnsNotificationModel
- SnsRecordModel
- SqsAttributesModel
- SqsModel
- SqsMsgAttributeModel
- SqsRecordModel
- VpcLatticeModel
- VpcLatticeV2Model
- VpcLatticeV2RequestContext
- VpcLatticeV2RequestContextIdentity
- pydantic.env_settings.BaseSettings
- pydantic.main.Request
Class variables
var Config
Static methods
def construct(**values: Any) ‑> Model
-
Creates a new model setting dict and fields_set from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if
Config.extra = 'allow'
was set since it adds all passed valuesExpand source code
@classmethod def construct(cls: Type['Model'], _fields_set: Optional['SetStr'] = None, **values: Any) -> 'Model': """ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if `Config.extra = 'allow'` was set since it adds all passed values """ m = cls.__new__(cls) fields_values: Dict[str, Any] = {} for name, field in cls.__fields__.items(): if field.alt_alias and field.alias in values: fields_values[name] = values[field.alias] elif name in values: fields_values[name] = values[name] elif not field.required: fields_values[name] = field.get_default() fields_values.update(values) object_setattr(m, '__dict__', fields_values) if _fields_set is None: _fields_set = set(values.keys()) object_setattr(m, '__fields_set__', _fields_set) m._init_private_attributes() return m
def from_orm(obj: Any) ‑> Model
-
Expand source code
@classmethod def from_orm(cls: Type['Model'], obj: Any) -> 'Model': if not cls.__config__.orm_mode: raise ConfigError('You must have the config attribute orm_mode=True to use from_orm') obj = {ROOT_KEY: obj} if cls.__custom_root_type__ else cls._decompose_class(obj) m = cls.__new__(cls) values, fields_set, validation_error = validate_model(cls, obj) if validation_error: raise validation_error object_setattr(m, '__dict__', values) object_setattr(m, '__fields_set__', fields_set) m._init_private_attributes() return m
def parse_file(path: Union[str, pathlib.Path], *, content_type: str = None, encoding: str = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) ‑> Model
-
Expand source code
@classmethod def parse_file( cls: Type['Model'], path: Union[str, Path], *, content_type: str = None, encoding: str = 'utf8', proto: Protocol = None, allow_pickle: bool = False, ) -> 'Model': obj = load_file( path, proto=proto, content_type=content_type, encoding=encoding, allow_pickle=allow_pickle, json_loads=cls.__config__.json_loads, ) return cls.parse_obj(obj)
def parse_obj(obj: Any) ‑> Model
-
Expand source code
@classmethod def parse_obj(cls: Type['Model'], obj: Any) -> 'Model': obj = cls._enforce_dict_if_root(obj) if not isinstance(obj, dict): try: obj = dict(obj) except (TypeError, ValueError) as e: exc = TypeError(f'{cls.__name__} expected dict not {obj.__class__.__name__}') raise ValidationError([ErrorWrapper(exc, loc=ROOT_KEY)], cls) from e return cls(**obj)
def parse_raw(b: Union[str, bytes], *, content_type: str = None, encoding: str = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) ‑> Model
-
Expand source code
@classmethod def parse_raw( cls: Type['Model'], b: StrBytes, *, content_type: str = None, encoding: str = 'utf8', proto: Protocol = None, allow_pickle: bool = False, ) -> 'Model': try: obj = load_str_bytes( b, proto=proto, content_type=content_type, encoding=encoding, allow_pickle=allow_pickle, json_loads=cls.__config__.json_loads, ) except (ValueError, TypeError, UnicodeDecodeError) as e: raise ValidationError([ErrorWrapper(e, loc=ROOT_KEY)], cls) return cls.parse_obj(obj)
def schema(by_alias: bool = True, ref_template: str = '#/definitions/{model}') ‑> DictStrAny
-
Expand source code
@classmethod def schema(cls, by_alias: bool = True, ref_template: str = default_ref_template) -> 'DictStrAny': cached = cls.__schema_cache__.get((by_alias, ref_template)) if cached is not None: return cached s = model_schema(cls, by_alias=by_alias, ref_template=ref_template) cls.__schema_cache__[(by_alias, ref_template)] = s return s
def schema_json(*, by_alias: bool = True, ref_template: str = '#/definitions/{model}', **dumps_kwargs: Any) ‑> str
-
Expand source code
@classmethod def schema_json( cls, *, by_alias: bool = True, ref_template: str = default_ref_template, **dumps_kwargs: Any ) -> str: from .json import pydantic_encoder return cls.__config__.json_dumps( cls.schema(by_alias=by_alias, ref_template=ref_template), default=pydantic_encoder, **dumps_kwargs )
def update_forward_refs(**localns: Any) ‑> None
-
Try to update ForwardRefs on fields based on this Model, globalns and localns.
Expand source code
@classmethod def update_forward_refs(cls, **localns: Any) -> None: """ Try to update ForwardRefs on fields based on this Model, globalns and localns. """ update_model_forward_refs(cls, cls.__fields__.values(), cls.__config__.json_encoders, localns)
def validate(value: Any) ‑> Model
-
Expand source code
@classmethod def validate(cls: Type['Model'], value: Any) -> 'Model': if isinstance(value, cls): copy_on_model_validation = cls.__config__.copy_on_model_validation # whether to deep or shallow copy the model on validation, None means do not copy deep_copy: Optional[bool] = None if copy_on_model_validation not in {'deep', 'shallow', 'none'}: # Warn about deprecated behavior warnings.warn( "`copy_on_model_validation` should be a string: 'deep', 'shallow' or 'none'", DeprecationWarning ) if copy_on_model_validation: deep_copy = False if copy_on_model_validation == 'shallow': # shallow copy deep_copy = False elif copy_on_model_validation == 'deep': # deep copy deep_copy = True if deep_copy is None: return value else: return value._copy_and_set_values(value.__dict__, value.__fields_set__, deep=deep_copy) value = cls._enforce_dict_if_root(value) if isinstance(value, dict): return cls(**value) elif cls.__config__.orm_mode: return cls.from_orm(value) else: try: value_as_dict = dict(value) except (TypeError, ValueError) as e: raise DictError() from e return cls(**value_as_dict)
Methods
def copy(self: Model, *, include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), ForwardRef(None)] = None, exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), ForwardRef(None)] = None, update: Optional[ForwardRef('DictStrAny')] = None, deep: bool = False) ‑> Model
-
Duplicate a model, optionally choose which fields to include, exclude and change.
:param include: fields to include in new model :param exclude: fields to exclude from new model, as with values this takes precedence over include :param update: values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data :param deep: set to
True
to make a deep copy of the model :return: new model instanceExpand source code
def copy( self: 'Model', *, include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, update: Optional['DictStrAny'] = None, deep: bool = False, ) -> 'Model': """ Duplicate a model, optionally choose which fields to include, exclude and change. :param include: fields to include in new model :param exclude: fields to exclude from new model, as with values this takes precedence over include :param update: values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data :param deep: set to `True` to make a deep copy of the model :return: new model instance """ values = dict( self._iter(to_dict=False, by_alias=False, include=include, exclude=exclude, exclude_unset=False), **(update or {}), ) # new `__fields_set__` can have unset optional fields with a set value in `update` kwarg if update: fields_set = self.__fields_set__ | update.keys() else: fields_set = set(self.__fields_set__) return self._copy_and_set_values(values, fields_set, deep=deep)
def dict(self, *, include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), ForwardRef(None)] = None, exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), ForwardRef(None)] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) ‑> DictStrAny
-
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Expand source code
def dict( self, *, include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, ) -> 'DictStrAny': """ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. """ if skip_defaults is not None: warnings.warn( f'{self.__class__.__name__}.dict(): "skip_defaults" is deprecated and replaced by "exclude_unset"', DeprecationWarning, ) exclude_unset = skip_defaults return dict( self._iter( to_dict=True, by_alias=by_alias, include=include, exclude=exclude, exclude_unset=exclude_unset, exclude_defaults=exclude_defaults, exclude_none=exclude_none, ) )
def json(self, *, include: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), ForwardRef(None)] = None, exclude: Union[ForwardRef('AbstractSetIntStr'), ForwardRef('MappingIntStrAny'), ForwardRef(None)] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) ‑> str
-
Generate a JSON representation of the model,
include
andexclude
arguments as perdict()
.encoder
is an optional function to supply asdefault
to json.dumps(), other arguments as perjson.dumps()
.Expand source code
def json( self, *, include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any, ) -> str: """ Generate a JSON representation of the model, `include` and `exclude` arguments as per `dict()`. `encoder` is an optional function to supply as `default` to json.dumps(), other arguments as per `json.dumps()`. """ if skip_defaults is not None: warnings.warn( f'{self.__class__.__name__}.json(): "skip_defaults" is deprecated and replaced by "exclude_unset"', DeprecationWarning, ) exclude_unset = skip_defaults encoder = cast(Callable[[Any], Any], encoder or self.__json_encoder__) # We don't directly call `self.dict()`, which does exactly this with `to_dict=True` # because we want to be able to keep raw `BaseModel` instances and not as `dict`. # This allows users to write custom JSON encoders for given `BaseModel` classes. data = dict( self._iter( to_dict=models_as_dict, by_alias=by_alias, include=include, exclude=exclude, exclude_unset=exclude_unset, exclude_defaults=exclude_defaults, exclude_none=exclude_none, ) ) if self.__custom_root_type__: data = data[ROOT_KEY] return self.__config__.json_dumps(data, default=encoder, **dumps_kwargs)
class ValidationError (errors: Sequence[Union[Sequence[Any], pydantic.error_wrappers.ErrorWrapper]], model: ModelOrDc)
-
Mixin to provide str, repr, and pretty methods. See #884 for more details.
pretty is used by devtools to provide human readable representations of objects.
Expand source code
class ValidationError(Representation, ValueError): __slots__ = 'raw_errors', 'model', '_error_cache' def __init__(self, errors: Sequence[ErrorList], model: 'ModelOrDc') -> None: self.raw_errors = errors self.model = model self._error_cache: Optional[List['ErrorDict']] = None def errors(self) -> List['ErrorDict']: if self._error_cache is None: try: config = self.model.__config__ # type: ignore except AttributeError: config = self.model.__pydantic_model__.__config__ # type: ignore self._error_cache = list(flatten_errors(self.raw_errors, config)) return self._error_cache def json(self, *, indent: Union[None, int, str] = 2) -> str: return json.dumps(self.errors(), indent=indent, default=pydantic_encoder) def __str__(self) -> str: errors = self.errors() no_errors = len(errors) return ( f'{no_errors} validation error{"" if no_errors == 1 else "s"} for {self.model.__name__}\n' f'{display_errors(errors)}' ) def __repr_args__(self) -> 'ReprArgs': return [('model', self.model.__name__), ('errors', self.errors())]
Ancestors
- pydantic.utils.Representation
- builtins.ValueError
- builtins.Exception
- builtins.BaseException
Instance variables
var model
-
Return an attribute of instance, which is of type owner.
var raw_errors
-
Return an attribute of instance, which is of type owner.
Methods
def errors(self) ‑> List[ErrorDict]
-
Expand source code
def errors(self) -> List['ErrorDict']: if self._error_cache is None: try: config = self.model.__config__ # type: ignore except AttributeError: config = self.model.__pydantic_model__.__config__ # type: ignore self._error_cache = list(flatten_errors(self.raw_errors, config)) return self._error_cache
def json(self, *, indent: Union[ForwardRef(None), int, str] = 2) ‑> str
-
Expand source code
def json(self, *, indent: Union[None, int, str] = 2) -> str: return json.dumps(self.errors(), indent=indent, default=pydantic_encoder)