Module aws_lambda_powertools.utilities.parser.models.kafka

Classes

class KafkaBaseEventModel (**data: Any)

Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

Expand source code
class KafkaBaseEventModel(BaseModel):
    bootstrapServers: List[str]
    records: Dict[str, List[KafkaRecordModel]]

    @validator("bootstrapServers", pre=True, allow_reuse=True)
    def split_servers(cls, value):
        return None if not value else value.split(SERVERS_DELIMITER)

Ancestors

  • pydantic.main.BaseModel
  • pydantic.utils.Representation

Subclasses

Class variables

var bootstrapServers : List[str]
var records : Dict[str, List[KafkaRecordModel]]

Static methods

def split_servers(value)
class KafkaMskEventModel (**data: Any)

Fully-managed AWS Apache Kafka event trigger Documentation:


Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

Expand source code
class KafkaMskEventModel(KafkaBaseEventModel):
    """Fully-managed AWS Apache Kafka event trigger
    Documentation:
    --------------
    - https://docs.aws.amazon.com/lambda/latest/dg/with-msk.html
    """

    eventSource: Literal["aws:kafka"]
    eventSourceArn: str

Ancestors

Class variables

var eventSource : Literal['aws:kafka']
var eventSourceArn : str
class KafkaRecordModel (**data: Any)

Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

Expand source code
class KafkaRecordModel(BaseModel):
    topic: str
    partition: int
    offset: int
    timestamp: datetime
    timestampType: str
    key: bytes
    value: Union[str, Type[BaseModel]]
    headers: List[Dict[str, bytes]]

    # Added type ignore to keep compatibility between Pydantic v1 and v2
    _decode_key = validator("key", allow_reuse=True)(base64_decode)  # type: ignore[type-var, unused-ignore]

    @validator("value", pre=True, allow_reuse=True)
    def data_base64_decode(cls, value):
        as_bytes = base64_decode(value)
        return bytes_to_string(as_bytes)

    @validator("headers", pre=True, allow_reuse=True)
    def decode_headers_list(cls, value):
        for header in value:
            for key, values in header.items():
                header[key] = bytes(values)
        return value

Ancestors

  • pydantic.main.BaseModel
  • pydantic.utils.Representation

Class variables

var headers : List[Dict[str, bytes]]
var key : bytes
var offset : int
var partition : int
var timestamp : datetime.datetime
var timestampType : str
var topic : str
var value : Union[str, Type[pydantic.main.BaseModel]]

Static methods

def data_base64_decode(value)
def decode_headers_list(value)
class KafkaSelfManagedEventModel (**data: Any)

Self-managed Apache Kafka event trigger Documentation:


Create a new model by parsing and validating input data from keyword arguments.

Raises ValidationError if the input data cannot be parsed to form a valid model.

Expand source code
class KafkaSelfManagedEventModel(KafkaBaseEventModel):
    """Self-managed Apache Kafka event trigger
    Documentation:
    --------------
    - https://docs.aws.amazon.com/lambda/latest/dg/with-kafka.html
    """

    eventSource: Literal["aws:SelfManagedKafka"]

Ancestors

Class variables

var eventSource : Literal['aws:SelfManagedKafka']