Skip to content

Agents for Amazon Bedrock

Create Agents for Amazon Bedrock using event handlers and auto generation of OpenAPI schemas.

flowchart LR
    Bedrock[LLM] <-- uses --> Agent
    You[User input] --> Agent
    Agent -- consults --> OpenAPI
    Agent[Agents for Amazon Bedrock] -- invokes --> Lambda

    subgraph OpenAPI
        Schema
    end

    subgraph Lambda[Lambda Function]
        direction TB
        Parsing[Parameter Parsing] --> Validation
        Validation[Parameter Validation] --> Routing
        Routing --> Code[Your code]
        Code --> ResponseValidation[Response Validation]
        ResponseValidation --> ResponseBuilding[Response Building]
    end

    subgraph ActionGroup[Action Group]
        OpenAPI -. generated from .-> Lambda
    end

    style Code fill:#ffa500,color:black,font-weight:bold,stroke-width:3px
    style You stroke:#0F0,stroke-width:2px


Key features

  • Minimal boilerplate to build Agents for Amazon Bedrock
  • Automatic generation of OpenAPI schemas from your business logic code
  • Built-in data validation for requests and responses
  • Similar experience to authoring REST and HTTP APIs

Terminology

Data validation automatically validates the user input and the response of your AWS Lambda function against a set of constraints defined by you.

Event handler is a Powertools for AWS feature that processes an event, runs data parsing and validation, routes the request to a specific function, and returns a response to the caller in the proper format.

OpenAPI schema is an industry standard JSON-serialized string that represents the structure and parameters of your API.

Action group is a collection of two resources where you define the actions that the agent should carry out: an OpenAPI schema to define the APIs that the agent can invoke to carry out its tasks, and a Lambda function to execute those actions.

Large Language Models (LLM) are very large deep learning models that are pre-trained on vast amounts of data, capable of extracting meanings from a sequence of text and understanding the relationship between words and phrases on it.

Agent for Amazon Bedrock is an Amazon Bedrock feature to build and deploy conversational agents that can interact with your customers using Large Language Models (LLM) and AWS Lambda functions.

Getting started

All examples shared in this documentation are available within the project repository

Install

This is unnecessary if you're installing Powertools for AWS Lambda (Python) via Lambda Layer/SAR.

You need to add pydantic as a dependency in your preferred tool e.g., requirements.txt, pyproject.toml. At this time, we only support Pydantic V1, due to an incompatibility with Pydantic V2 generated schemas and the Agents' API.

Required resources

To build Agents for Amazon Bedrock, you will need:

Requirement Description SAM Supported CDK Supported
Lambda Function Defines your business logic for the action group
OpenAPI Schema API description, structure, and action group parameters
Bedrock Service Role Allows Amazon Bedrock to invoke foundation models
Agents for Bedrock The service that will combine all the above to create the conversational agent

Using AWS SAM you can create your Lambda function and the necessary permissions. However, you still have to create your Agent for Amazon Bedrock using the AWS console.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
AWSTemplateFormatVersion: "2010-09-09"
Transform: AWS::Serverless-2016-10-31
Description: >
  Agents for Amazon Bedrock example with Powertools for AWS Lambda (Python)

Globals: # https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-specification-template-anatomy-globals.html
  Function:
    Timeout: 30
    Runtime: python3.12
    Tracing: Active
    Environment:
      Variables:
        POWERTOOLS_SERVICE_NAME: PowertoolsHelloWorld
        POWERTOOLS_LOG_LEVEL: INFO

Resources:
  ApiFunction:
    Type: AWS::Serverless::Function
    Properties:
      Handler: getting_started.lambda_handler
      Description: Agent for Amazon Bedrock handler function
      CodeUri: ../src


  BedrockPermission: # (1)!
    Type: AWS::Lambda::Permission
    Properties:
      Action: lambda:InvokeFunction
      FunctionName: !GetAtt ApiFunction.Arn
      Principal: bedrock.amazonaws.com
      SourceAccount: !Sub ${AWS::AccountId}

  BedrockServiceRole:
    Type: AWS::IAM::Role
    Properties:
      AssumeRolePolicyDocument:
        Version: "2012-10-17"
        Statement:
          - Effect: Allow
            Principal:
              Action:
                - sts:assumeRole
              Service:
                - bedrock.amazonaws.com
      Policies:
        - PolicyName: bedrock
          PolicyDocument:
            Version: "2012-10-17"
            Statement:
              - Effect: Allow
                Action:
                  - bedrock:InvokeModel
                Resource: # (2)!
                  - !Sub arn:aws:${AWS::Region}:region::foundation-model/anthropic.claude-v2
                  - !Sub arn:aws:${AWS::Region}:region::foundation-model/anthropic.claude-v2:1
                  - !Sub arn:aws:${AWS::Region}:region::foundation-model/anthropic.claude-instant-v1

Outputs:
  BedrockServiceRole:
    Description: The role ARN to be used by Amazon Bedrock
    Value: !GetAtt BedrockServiceRole.Arn  # (3)!
  1. Amazon Bedrock needs permissions to invoke this Lambda function
  2. Check the supported foundational models
  3. You need the role ARN when creating the Agent for Amazon Bedrock

This example uses the Generative AI CDK constructs to create your Agent with AWS CDK. These constructs abstract the underlying permission setup and code bundling of your Lambda function.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from aws_cdk import (
    Stack,
)
from aws_cdk.aws_lambda import Runtime
from aws_cdk.aws_lambda_python_alpha import PythonFunction
from cdklabs.generative_ai_cdk_constructs.bedrock import (
    ActionGroupExecutor,
    Agent,
    AgentActionGroup,
    ApiSchema,
    BedrockFoundationModel,
)
from constructs import Construct


class AgentsCdkStack(Stack):

    def __init__(self, scope: Construct, construct_id: str, **kwargs) -> None:
        super().__init__(scope, construct_id, **kwargs)

        action_group_function = PythonFunction(
            self,
            "LambdaFunction",
            runtime=Runtime.PYTHON_3_12,
            entry="./lambda",  # (1)!
            index="app.py",
            handler="lambda_handler",
        )

        agent = Agent(
            self,
            "Agent",
            foundation_model=BedrockFoundationModel.ANTHROPIC_CLAUDE_INSTANT_V1_2,
            instruction="You are a helpful and friendly agent that answers questions about insurance claims.",
        )

        executor_group = ActionGroupExecutor(lambda_=action_group_function)

        action_group = AgentActionGroup(
            self,
            "ActionGroup",
            action_group_name="InsureClaimsSupport",
            description="Use these functions for insurance claims support",
            action_group_executor=executor_group,
            action_group_state="ENABLED",
            api_schema=ApiSchema.from_asset("./lambda/openapi.json"),  # (2)!
        )
        agent.add_action_group(action_group)
  1. The path to your Lambda function handler
  2. The path to the OpenAPI schema describing your API

Your first Agent

To create an agent, use the BedrockAgentResolver to annotate your actions. This is similar to the way all the other Event Handler resolvers work.

You are required to add a description parameter in each endpoint, doing so will improve Bedrock's understanding of your actions.

The resolvers used by Agents for Amazon Bedrock are compatible with all Powertools for AWS Lambda features. For reference, we use Logger and Tracer in this example.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
from time import time

from aws_lambda_powertools import Logger, Tracer
from aws_lambda_powertools.event_handler import BedrockAgentResolver
from aws_lambda_powertools.utilities.typing import LambdaContext

tracer = Tracer()
logger = Logger()
app = BedrockAgentResolver()


@app.get("/current_time", description="Gets the current time in seconds")  # (1)!
@tracer.capture_method
def current_time() -> int:
    return int(time())


@logger.inject_lambda_context
@tracer.capture_lambda_handler
def lambda_handler(event: dict, context: LambdaContext):
    return app.resolve(event, context)  # (2)!
  1. description is a required field that should contain a human readable description of your action
  2. We take care of parsing, validating, routing and responding to the request.

Powertools for AWS Lambda generates this automatically from the Lambda handler.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
{
  "openapi": "3.0.3",
  "info": {
    "title": "Powertools API",
    "version": "1.0.0"
  },
  "servers": [
    {
      "url": "/"
    }
  ],
  "paths": {
    "/current_time": {
      "get": {
        "summary": "GET /current_time",
        "description": "Gets the current time in seconds",
        "operationId": "current_time_current_time_get",
        "responses": {
          "200": {
            "description": "Successful Response",
            "content": {
              "application/json": {
                "schema": {
                  "type": "integer",
                  "title": "Return"
                }
              }
            }
          },
          "422": {
            "description": "Validation Error",
            "content": {
              "application/json": {
                "schema": {
                  "$ref": "#/components/schemas/HTTPValidationError"
                }
              }
            }
          }
        }
      }
    }
  },
  "components": {
    "schemas": {
      "HTTPValidationError": {
        "properties": {
          "detail": {
            "items": {
              "$ref": "#/components/schemas/ValidationError"
            },
            "type": "array",
            "title": "Detail"
          }
        },
        "type": "object",
        "title": "HTTPValidationError"
      },
      "ValidationError": {
        "properties": {
          "loc": {
            "items": {
              "anyOf": [
                {
                  "type": "string"
                },
                {
                  "type": "integer"
                }
              ]
            },
            "type": "array",
            "title": "Location"
          },
          "msg": {
            "type": "string",
            "title": "Message"
          },
          "type": {
            "type": "string",
            "title": "Error Type"
          }
        },
        "type": "object",
        "required": [
          "loc",
          "msg",
          "type"
        ],
        "title": "ValidationError"
      }
    }
  }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
{
  "sessionId": "123456789012345",
  "sessionAttributes": {},
  "inputText": "What is the current time?",
  "promptSessionAttributes": {},
  "apiPath": "/current_time",
  "agent": {
    "name": "TimeAgent",
    "version": "DRAFT",
    "id": "XLHH72XNF2",
    "alias": "TSTALIASID"
  },
  "httpMethod": "GET",
  "messageVersion": "1.0",
  "actionGroup": "CurrentTime"
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
{
  "messageVersion": "1.0",
  "response": {
    "actionGroup": "CurrentTime",
    "apiPath": "/current_time",
    "httpMethod": "GET",
    "httpStatusCode": 200,
    "responseBody": {
      "application/json": {
        "body": "1704708165"
      }
    }
  }
}
What happens under the hood?

Powertools will handle the request from the Agent, parse, validate, and route it to the correct method in your code. The response is then validated and formatted back to the Agent.

sequenceDiagram
    actor User

    User->>Agent: What is the current time?
    Agent->>OpenAPI schema: consults
    OpenAPI schema-->>Agent: GET /current_time
    Agent-->>Agent: LLM interaction

    box Powertools
        participant Lambda
        participant Parsing
        participant Validation
        participant Routing
        participant Your Code
    end

    Agent->>Lambda: GET /current_time
    activate Lambda
    Lambda->>Parsing: parses parameters
    Parsing->>Validation: validates input
    Validation->>Routing: finds method to call
    Routing->>Your Code: executes
    activate Your Code
    Your Code->>Routing: 1709215709
    deactivate Your Code
    Routing->>Validation: returns output
    Validation->>Parsing: validates output
    Parsing->>Lambda: formats response
    Lambda->>Agent: 1709215709
    deactivate Lambda

    Agent-->>Agent: LLM interaction
    Agent->>User: "The current time is 14:08:29 GMT"

Validating input and output

You can define the expected format for incoming data and responses by using type annotations. Define constraints using standard Python types, dataclasses or Pydantic models. Pydantic is a popular library for data validation using Python type annotations.

This example uses Pydantic's EmailStr to validate the email address passed to the schedule_meeting function. The function then returns a boolean indicating if the meeting was successfully scheduled.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
from pydantic import EmailStr
from typing_extensions import Annotated

from aws_lambda_powertools import Logger, Tracer
from aws_lambda_powertools.event_handler import BedrockAgentResolver
from aws_lambda_powertools.event_handler.openapi.params import Body, Query
from aws_lambda_powertools.utilities.typing import LambdaContext

tracer = Tracer()
logger = Logger()
app = BedrockAgentResolver()  # (1)!


@app.get("/schedule_meeting", description="Schedules a meeting with the team")
@tracer.capture_method
def schedule_meeting(
    email: Annotated[EmailStr, Query(description="The email address of the customer")],  # (2)!
) -> Annotated[bool, Body(description="Whether the meeting was scheduled successfully")]:  # (3)!
    logger.info("Scheduling a meeting", email=email)
    return True


@logger.inject_lambda_context
@tracer.capture_lambda_handler
def lambda_handler(event: dict, context: LambdaContext):
    return app.resolve(event, context)
  1. No need to add the enable_validation parameter, as it's enabled by default.
  2. Describe each input using human-readable descriptions
  3. Add the typing annotations to your parameters and return types, and let the event handler take care of the rest
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
{
  "openapi": "3.0.3",
  "info": {
    "title": "Powertools API",
    "version": "1.0.0"
  },
  "servers": [
    {
      "url": "/"
    }
  ],
  "paths": {
    "/schedule_meeting": {
      "get": {
        "summary": "GET /schedule_meeting",
        "description": "Schedules a meeting with the team",
        "operationId": "schedule_meeting_schedule_meeting_get",
        "parameters": [
          {
            "description": "The email address of the customer",
            "required": true,
            "schema": {
              "type": "string",
              "format": "email",
              "title": "Email",
              "description": "The email address of the customer"
            },
            "name": "email",
            "in": "query"
          }
        ],
        "responses": {
          "200": {
            "description": "Successful Response",
            "content": {
              "application/json": {
                "schema": {
                  "type": "boolean",
                  "title": "Return",
                  "description": "Whether the meeting was scheduled successfully"
                }
              }
            }
          },
          "422": {
            "description": "Validation Error",
            "content": {
              "application/json": {
                "schema": {
                  "$ref": "#/components/schemas/HTTPValidationError"
                }
              }
            }
          }
        }
      }
    }
  },
  "components": {
    "schemas": {
      "HTTPValidationError": {
        "properties": {
          "detail": {
            "items": {
              "$ref": "#/components/schemas/ValidationError"
            },
            "type": "array",
            "title": "Detail"
          }
        },
        "type": "object",
        "title": "HTTPValidationError"
      },
      "ValidationError": {
        "properties": {
          "loc": {
            "items": {
              "anyOf": [
                {
                  "type": "string"
                },
                {
                  "type": "integer"
                }
              ]
            },
            "type": "array",
            "title": "Location"
          },
          "msg": {
            "type": "string",
            "title": "Message"
          },
          "type": {
            "type": "string",
            "title": "Error Type"
          }
        },
        "type": "object",
        "required": [
          "loc",
          "msg",
          "type"
        ],
        "title": "ValidationError"
      }
    }
  }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
{
  "sessionId": "123456789012345",
  "sessionAttributes": {},
  "inputText": "Schedule a meeting with the team. My email is foo@example.org",
  "promptSessionAttributes": {},
  "apiPath": "/schedule_meeting",
  "parameters": [
    {
      "name": "email",
      "type": "string",
      "value": "foo@example.org"
    }
  ],
  "agent": {
    "name": "TimeAgent",
    "version": "DRAFT",
    "id": "XLHH72XNF2",
    "alias": "TSTALIASID"
  },
  "httpMethod": "GET",
  "messageVersion": "1.0",
  "actionGroup": "SupportAssistant"
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
{
  "messageVersion": "1.0",
  "response": {
    "actionGroup": "SupportAssistant",
    "apiPath": "/schedule_meeting",
    "httpMethod": "GET",
    "httpStatusCode": 200,
    "responseBody": {
      "application/json": {
        "body": "true"
      }
    }
  }
}

When validation fails

If the request validation fails, your event handler will not be called, and an error message is returned to Bedrock. Similarly, if the response fails validation, your handler will abort the response.

What does this mean for my Agent?

The event handler will always return a response according to the OpenAPI schema. A validation failure always results in a 422 response. However, how Amazon Bedrock interprets that failure is non-deterministic, since it depends on the characteristics of the LLM being used.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
{
  "sessionId": "123456789012345",
  "sessionAttributes": {},
  "inputText": "Schedule a meeting with the team. My email is foo@example@org",
  "promptSessionAttributes": {},
  "apiPath": "/schedule_meeting",
  "parameters": [
    {
      "name": "email",
      "type": "string",
      "value": "foo@example@org"
    }
  ],
  "agent": {
    "name": "TimeAgent",
    "version": "DRAFT",
    "id": "XLHH72XNF2",
    "alias": "TSTALIASID"
  },
  "httpMethod": "GET",
  "messageVersion": "1.0",
  "actionGroup": "SupportAssistant"
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
{
  "messageVersion": "1.0",
  "response": {
    "actionGroup": "SupportAssistant",
    "apiPath": "/schedule_meeting",
    "httpMethod": "GET",
    "httpStatusCode": 200,
    "responseBody": {
      "application/json": {
        "body": "{\"statusCode\":422,\"detail\":[{\"loc\":[\"query\",\"email\"],\"type\":\"value_error.email\"}]}"
      }
    }
  }
}

sequenceDiagram
    Agent->>Lambda: input payload
    activate Lambda
    Lambda->>Parsing: parses input parameters
    Parsing->>Validation: validates input
    Validation-->Validation: failure
    box BedrockAgentResolver
    participant Lambda
    participant Parsing
    participant Validation
    participant Routing
    participant Your Code
    end
    Note right of Validation: Your code is never called
    Validation->>Agent: 422 response
    deactivate Lambda

Generating OpenAPI schemas

Use the get_openapi_json_schema function provided by the resolver to produce a JSON-serialized string that represents your OpenAPI schema. You can print this string or save it to a file. You'll use the file later when creating the Agent.

You'll need to regenerate the OpenAPI schema and update your Agent everytime your API changes.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
from time import time

from aws_lambda_powertools import Logger, Tracer
from aws_lambda_powertools.event_handler import BedrockAgentResolver
from aws_lambda_powertools.utilities.typing import LambdaContext

tracer = Tracer()
logger = Logger()
app = BedrockAgentResolver()


@app.get("/current_time", description="Gets the current time in seconds")
@tracer.capture_method
def current_time() -> int:
    return int(time())


@logger.inject_lambda_context
@tracer.capture_lambda_handler
def lambda_handler(event: dict, context: LambdaContext):
    return app.resolve(event, context)


if __name__ == "__main__":  # (1)!
    print(app.get_openapi_json_schema())  # (2)!
  1. This ensures that it's only executed when running the file directly, and not when running on the Lambda runtime.
  2. You can use additional options to customize the OpenAPI schema.
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
{
  "openapi": "3.0.3",
  "info": {
    "title": "Powertools API",
    "version": "1.0.0"
  },
  "servers": [
    {
      "url": "/"
    }
  ],
  "paths": {
    "/current_time": {
      "get": {
        "summary": "GET /current_time",
        "description": "Gets the current time in seconds",
        "operationId": "current_time_current_time_get",
        "responses": {
          "200": {
            "description": "Successful Response",
            "content": {
              "application/json": {
                "schema": {
                  "type": "integer",
                  "title": "Return"
                }
              }
            }
          },
          "422": {
            "description": "Validation Error",
            "content": {
              "application/json": {
                "schema": {
                  "$ref": "#/components/schemas/HTTPValidationError"
                }
              }
            }
          }
        }
      }
    }
  },
  "components": {
    "schemas": {
      "HTTPValidationError": {
        "properties": {
          "detail": {
            "items": {
              "$ref": "#/components/schemas/ValidationError"
            },
            "type": "array",
            "title": "Detail"
          }
        },
        "type": "object",
        "title": "HTTPValidationError"
      },
      "ValidationError": {
        "properties": {
          "loc": {
            "items": {
              "anyOf": [
                {
                  "type": "string"
                },
                {
                  "type": "integer"
                }
              ]
            },
            "type": "array",
            "title": "Location"
          },
          "msg": {
            "type": "string",
            "title": "Message"
          },
          "type": {
            "type": "string",
            "title": "Error Type"
          }
        },
        "type": "object",
        "required": [
          "loc",
          "msg",
          "type"
        ],
        "title": "ValidationError"
      }
    }
  }
}

To get the OpenAPI schema, run the Python script from your terminal. The script will generate the schema directly to standard output, which you can redirect to a file.

1
python3 app.py > schema.json

Crafting effective OpenAPI schemas

Working with Agents for Amazon Bedrock will introduce non-deterministic behaviour to your system.

Why is that?

Amazon Bedrock uses LLMs to understand and respond to user input. These models are trained on vast amounts of data and are capable of extracting meanings from a sequence of text and understanding the relationship between words and phrases on it. However, this means that the same input can result in different outputs, depending on the characteristics of the LLM being used.

The OpenAPI schema provides context and semantics to the Agent that will support the decision process for invoking our Lambda function. Sparse or ambiguous schemas can result in unexpected outcomes.

We recommend enriching your OpenAPI schema with as many details as possible to help the Agent understand your functions, and make correct invocations. To achieve that, keep the following suggestions in mind:

  • Always describe your function behaviour using the description field in your annotations
  • When refactoring, update your description field to match the function outcomes
  • Use distinct description for each function to have clear separation of semantics

Video walkthrough

To create an Agent for Amazon Bedrock, refer to the official documentation provided by AWS.

The following video demonstrates the end-to-end process:

During the creation process, you should use the schema previously generated when prompted for an OpenAPI specification.

Advanced

Accessing custom request fields

The event sent by Agents for Amazon Bedrock into your Lambda function contains a number of extra event fields, exposed in the app.current_event field.

Why is this useful?

You can for instance identify new conversations (session_id) or store and analyze entire conversations (input_text).

In this example, we append correlation data to all generated logs. This can be used to aggregate logs by session_id and observe the entire conversation between a user and the Agent.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
from time import time

from aws_lambda_powertools import Logger
from aws_lambda_powertools.event_handler import BedrockAgentResolver
from aws_lambda_powertools.utilities.typing import LambdaContext

logger = Logger()
app = BedrockAgentResolver()


@app.get("/current_time", description="Gets the current time in seconds")  # (1)!
def current_time() -> int:
    logger.append_keys(
        session_id=app.current_event.session_id,
        action_group=app.current_event.action_group,
        input_text=app.current_event.input_text,
    )

    logger.info("Serving current_time")
    return int(time())


@logger.inject_lambda_context
def lambda_handler(event: dict, context: LambdaContext):
    return app.resolve(event, context)

The input event fields are:

Name Type Description
message_version str The version of the message that identifies the format of the event data going into the Lambda function and the expected format of the response from a Lambda function. Amazon Bedrock only supports version 1.0.
agent BedrockAgentInfo Contains information about the name, ID, alias, and version of the agent that the action group belongs to.
input_text str The user input for the conversation turn.
session_id str The unique identifier of the agent session.
action_group str The name of the action group.
api_path str The path to the API operation, as defined in the OpenAPI schema.
http_method str The method of the API operation, as defined in the OpenAPI schema.
parameters List[BedrockAgentProperty] Contains a list of objects. Each object contains the name, type, and value of a parameter in the API operation, as defined in the OpenAPI schema.
request_body BedrockAgentRequestBody Contains the request body and its properties, as defined in the OpenAPI schema.
session_attributes Dict[str, str] Contains session attributes and their values.
prompt_session_attributes Dict[str, str] Contains prompt attributes and their values.

Additional metadata

To enrich the view that Agents for Amazon Bedrock has of your Lambda functions, use a combination of Pydantic Models and OpenAPI type annotations to add constraints to your APIs parameters.

When is this useful?

Adding constraints to your function parameters can help you to enforce data validation and improve the understanding of your APIs by Amazon Bedrock.

Customizing OpenAPI parameters

Whenever you use OpenAPI parameters to validate query strings or path parameters, you can enhance validation and OpenAPI documentation by using any of these parameters:

Field name Type Description
alias str Alternative name for a field, used when serializing and deserializing data
validation_alias str Alternative name for a field during validation (but not serialization)
serialization_alias str Alternative name for a field during serialization (but not during validation)
description str Human-readable description
gt float Greater than. If set, value must be greater than this. Only applicable to numbers
ge float Greater than or equal. If set, value must be greater than or equal to this. Only applicable to numbers
lt float Less than. If set, value must be less than this. Only applicable to numbers
le float Less than or equal. If set, value must be less than or equal to this. Only applicable to numbers
min_length int Minimum length for strings
max_length int Maximum length for strings
pattern string A regular expression that the string must match.
strict bool If True, strict validation is applied to the field. See Strict Mode for details
multiple_of float Value must be a multiple of this. Only applicable to numbers
allow_inf_nan bool Allow inf, -inf, nan. Only applicable to numbers
max_digits int Maximum number of allow digits for strings
decimal_places int Maximum number of decimal places allowed for numbers
examples List[Any] List of examples of the field
deprecated bool Marks the field as deprecated
include_in_schema bool If False the field will not be part of the exported OpenAPI schema
json_schema_extra JsonDict Any additional JSON schema data for the schema property

To implement these customizations, include extra constraints when defining your parameters:

Customizing API parameters
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import requests
from typing_extensions import Annotated

from aws_lambda_powertools import Logger
from aws_lambda_powertools.event_handler import BedrockAgentResolver
from aws_lambda_powertools.event_handler.openapi.params import Body, Query
from aws_lambda_powertools.utilities.typing import LambdaContext

app = BedrockAgentResolver()

logger = Logger()


@app.post(
    "/todos",
    description="Creates a TODO",
)
def create_todo(
    title: Annotated[str, Query(max_length=200, strict=True, description="The TODO title")],  # (1)!
) -> Annotated[bool, Body(description="Was the TODO created correctly?")]:
    todo = requests.post("https://jsonplaceholder.typicode.com/todos", data={"title": title})
    try:
        todo.raise_for_status()
        return True
    except Exception:
        logger.exception("Error creating TODO")
        return False


def lambda_handler(event: dict, context: LambdaContext) -> dict:
    return app.resolve(event, context)
  1. Title should not be larger than 200 characters and strict mode is activated

Customizing API operations

Customize your API endpoints by adding metadata to endpoint definitions.

Here's a breakdown of various customizable fields:

Field Name Type Description
summary str A concise overview of the main functionality of the endpoint. This brief introduction is usually displayed in autogenerated API documentation and helps consumers quickly understand what the endpoint does.
description str A more detailed explanation of the endpoint, which can include information about the operation's behavior, including side effects, error states, and other operational guidelines.
responses Dict[int, Dict[str, OpenAPIResponse]] A dictionary that maps each HTTP status code to a Response Object as defined by the OpenAPI Specification. This allows you to describe expected responses, including default or error messages, and their corresponding schemas or models for different status codes.
response_description str Provides the default textual description of the response sent by the endpoint when the operation is successful. It is intended to give a human-readable understanding of the result.
tags List[str] Tags are a way to categorize and group endpoints within the API documentation. They can help organize the operations by resources or other heuristic.
operation_id str A unique identifier for the operation, which can be used for referencing this operation in documentation or code. This ID must be unique across all operations described in the API.
include_in_schema bool A boolean value that determines whether or not this operation should be included in the OpenAPI schema. Setting it to False can hide the endpoint from generated documentation and schema exports, which might be useful for private or experimental endpoints.

To implement these customizations, include extra parameters when defining your routes:

Customzing API operations
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import requests
from typing_extensions import Annotated

from aws_lambda_powertools.event_handler import BedrockAgentResolver
from aws_lambda_powertools.event_handler.openapi.params import Body, Path
from aws_lambda_powertools.utilities.typing import LambdaContext

app = BedrockAgentResolver()


@app.get(
    "/todos/<todo_id>",
    summary="Retrieves a TODO item, returning it's title",
    description="Loads a TODO item identified by the `todo_id`",
    response_description="The TODO title",
    responses={
        200: {"description": "TODO item found"},
        404: {
            "description": "TODO not found",
        },
    },
    tags=["todos"],
)
def get_todo_title(
    todo_id: Annotated[int, Path(description="The ID of the TODO item from which to retrieve the title")],
) -> Annotated[str, Body(description="The TODO title")]:
    todo = requests.get(f"https://jsonplaceholder.typicode.com/todos/{todo_id}")
    todo.raise_for_status()

    return todo.json()["title"]


def lambda_handler(event: dict, context: LambdaContext) -> dict:
    return app.resolve(event, context)

Testing your code

Test your routes by passing an Agent for Amazon Bedrock proxy event request:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
from dataclasses import dataclass

import assert_bedrock_agent_response_module
import pytest


@pytest.fixture
def lambda_context():
    @dataclass
    class LambdaContext:
        function_name: str = "test"
        memory_limit_in_mb: int = 128
        invoked_function_arn: str = "arn:aws:lambda:eu-west-1:123456789012:function:test"
        aws_request_id: str = "da658bd3-2d6f-4e7b-8ec2-937234644fdc"

    return LambdaContext()


def test_lambda_handler(lambda_context):
    minimal_event = {
        "apiPath": "/current_time",
        "httpMethod": "GET",
        "inputText": "What is the current time?",
    }
    # Example of Bedrock Agent API request event:
    # https://docs.aws.amazon.com/bedrock/latest/userguide/agents-lambda.html#agents-lambda-input
    ret = assert_bedrock_agent_response_module.lambda_handler(minimal_event, lambda_context)
    assert ret["response"]["httpStatuScode"] == 200
    assert ret["response"]["responseBody"]["application/json"]["body"] != ""
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import time

from aws_lambda_powertools import Logger, Tracer
from aws_lambda_powertools.event_handler import BedrockAgentResolver
from aws_lambda_powertools.event_handler.openapi.params import Body
from aws_lambda_powertools.shared.types import Annotated
from aws_lambda_powertools.utilities.typing import LambdaContext

tracer = Tracer()
logger = Logger()
app = BedrockAgentResolver()


@app.get("/current_time", description="Gets the current time")
@tracer.capture_method
def current_time() -> Annotated[int, Body(description="Current time in milliseconds")]:
    return round(time.time() * 1000)


@logger.inject_lambda_context
@tracer.capture_lambda_handler
def lambda_handler(event: dict, context: LambdaContext) -> dict:
    return app.resolve(event, context)