This is not necessary if you're installing Powertools via Lambda Layer/SAR
Add aws-lambda-powertools[tracer] as a dependency in your preferred tool: e.g., requirements.txt, pyproject.toml. This will ensure you have the required dependencies before using Tracer.
Before your use this utility, your AWS Lambda function must have permissions to send traces to AWS X-Ray.
AWS Serverless Application Model (SAM) example
1 2 3 4 5 6 7 8 91011121314151617181920212223
AWSTemplateFormatVersion:"2010-09-09"Transform:AWS::Serverless-2016-10-31Description:AWS Lambda Powertools Tracer doc examplesGlobals:Function:Timeout:5Runtime:python3.9Tracing:ActiveEnvironment:Variables:POWERTOOLS_SERVICE_NAME:paymentLayers:# Find the latest Layer version in the official documentation# https://awslabs.github.io/aws-lambda-powertools-python/latest/#lambda-layer-!Subarn:aws:lambda:${AWS::Region}:017000801446:layer:AWSLambdaPowertoolsPython:21Resources:CaptureLambdaHandlerExample:Type:AWS::Serverless::FunctionProperties:CodeUri:../srcHandler:capture_lambda_handler.handler
You can quickly start by initializing Tracer and use capture_lambda_handler decorator for your Lambda handler.
Tracing Lambda handler with capture_lambda_handler
1 2 3 4 5 6 7 8 9101112131415
fromaws_lambda_powertoolsimportTracerfromaws_lambda_powertools.utilities.typingimportLambdaContexttracer=Tracer()# Sets service via POWERTOOLS_SERVICE_NAME env var# OR tracer = Tracer(service="example")defcollect_payment(charge_id:str)->str:returnf"dummy payment collected for charge: {charge_id}"@tracer.capture_lambda_handlerdefhandler(event:dict,context:LambdaContext)->str:charge_id=event.get("charge_id","")returncollect_payment(charge_id=charge_id)
capture_lambda_handler performs these additional tasks to ease operations:
Creates a ColdStart annotation to easily filter traces that have had an initialization overhead
Creates a Service annotation if service parameter or POWERTOOLS_SERVICE_NAME is set
Captures any response, or full exceptions generated by the handler, and include as tracing metadata
Annotations are key-values associated with traces and indexed by AWS X-Ray. You can use them to filter traces and to create Trace Groups to slice and dice your transactions.
Adding annotations with put_annotation method
1 2 3 4 5 6 7 8 9101112131415
fromaws_lambda_powertoolsimportTracerfromaws_lambda_powertools.utilities.typingimportLambdaContexttracer=Tracer()defcollect_payment(charge_id:str)->str:tracer.put_annotation(key="PaymentId",value=charge_id)returnf"dummy payment collected for charge: {charge_id}"@tracer.capture_lambda_handlerdefhandler(event:dict,context:LambdaContext)->str:charge_id=event.get("charge_id","")returncollect_payment(charge_id=charge_id)
Metadata are key-values also associated with traces but not indexed by AWS X-Ray. You can use them to add additional context for an operation using any native object.
Adding arbitrary metadata with put_metadata method
1 2 3 4 5 6 7 8 9101112131415161718192021
fromaws_lambda_powertoolsimportTracerfromaws_lambda_powertools.utilities.typingimportLambdaContexttracer=Tracer()defcollect_payment(charge_id:str)->str:returnf"dummy payment collected for charge: {charge_id}"@tracer.capture_lambda_handlerdefhandler(event:dict,context:LambdaContext)->str:payment_context={"charge_id":event.get("charge_id",""),"merchant_id":event.get("merchant_id",""),"request_id":context.aws_request_id,}payment_context["receipt_id"]=collect_payment(charge_id=payment_context["charge_id"])tracer.put_metadata(key="payment_response",value=payment_context)returnpayment_context["receipt_id"]
The serialization is performed by aws-xray-sdk via jsonpickle module. This can cause
side effects for file-like objects like boto S3 StreamingBody, where its response will be read only once during serialization.
importcontextlibfromcollections.abcimportGeneratorfromaws_lambda_powertoolsimportLogger,Tracerfromaws_lambda_powertools.utilities.typingimportLambdaContexttracer=Tracer()logger=Logger()@contextlib.contextmanager@tracer.capture_methoddefcollect_payment(charge_id:str)->Generator[str,None,None]:try:yieldf"dummy payment collected for charge: {charge_id}"finally:tracer.put_annotation(key="PaymentId",value=charge_id)@tracer.capture_lambda_handler@logger.inject_lambda_contextdefhandler(event:dict,context:LambdaContext)->str:charge_id=event.get("charge_id","")withcollect_payment(charge_id=charge_id)asreceipt_id:logger.info(f"Processing payment collection for charge {charge_id} with receipt {receipt_id}")returnreceipt_id
1 2 3 4 5 6 7 8 91011121314151617
fromcollections.abcimportGeneratorfromaws_lambda_powertoolsimportTracerfromaws_lambda_powertools.utilities.typingimportLambdaContexttracer=Tracer()@tracer.capture_methoddefcollect_payment(charge_id:str)->Generator[str,None,None]:yieldf"dummy payment collected for charge: {charge_id}"@tracer.capture_lambda_handlerdefhandler(event:dict,context:LambdaContext)->str:charge_id=event.get("charge_id","")returnnext(collect_payment(charge_id=charge_id))
Tracer automatically patches all supported libraries by X-Ray during initialization, by default. Underneath, AWS X-Ray SDK checks whether a supported library has been imported before patching.
If you're looking to shave a few microseconds, or milliseconds depending on your function memory configuration, you can patch specific modules using patch_modules param:
Use capture_response=False parameter in both capture_lambda_handler and capture_method decorators to instruct Tracer not to serialize function responses as metadata.
Info: This is useful in three common scenarios
You might return sensitive information you don't want it to be added to your traces
You might manipulate streaming objects that can be read only once; this prevents subsequent calls from being empty
You might return more than 64K of data e.g., message too long error
1 2 3 4 5 6 7 8 9101112131415161718
fromaws_lambda_powertoolsimportLogger,Tracerfromaws_lambda_powertools.utilities.typingimportLambdaContexttracer=Tracer()logger=Logger()@tracer.capture_method(capture_response=False)defcollect_payment(charge_id:str)->str:tracer.put_annotation(key="PaymentId",value=charge_id)logger.debug("Returning sensitive information....")returnf"dummy payment collected for charge: {charge_id}"@tracer.capture_lambda_handler(capture_response=False)defhandler(event:dict,context:LambdaContext)->str:charge_id=event.get("charge_id","")returncollect_payment(charge_id=charge_id)
importosimportboto3frombotocore.responseimportStreamingBodyfromaws_lambda_powertoolsimportLogger,Tracerfromaws_lambda_powertools.utilities.typingimportLambdaContextBUCKET=os.getenv("BUCKET_NAME","")REPORT_KEY=os.getenv("REPORT_KEY","")tracer=Tracer()logger=Logger()session=boto3.Session()s3=session.client("s3")@tracer.capture_method(capture_response=False)deffetch_payment_report(payment_id:str)->StreamingBody:ret=s3.get_object(Bucket=BUCKET,Key=f"{REPORT_KEY}/{payment_id}")logger.debug("Returning streaming body from S3 object....")returnret["body"]@tracer.capture_lambda_handler(capture_response=False)defhandler(event:dict,context:LambdaContext)->str:payment_id=event.get("payment_id","")report=fetch_payment_report(payment_id=payment_id)returnreport.read().decode()
Use capture_error=False parameter in both capture_lambda_handler and capture_method decorators to instruct Tracer not to serialize exceptions as metadata.
Info
Useful when returning sensitive information in exceptions/stack traces you don't control
Disabling exception auto-capture for tracing metadata
importosimportrequestsfromaws_lambda_powertoolsimportTracerfromaws_lambda_powertools.utilities.typingimportLambdaContexttracer=Tracer()ENDPOINT=os.getenv("PAYMENT_API","")classPaymentError(Exception):...@tracer.capture_method(capture_error=False)defcollect_payment(charge_id:str)->dict:try:ret=requests.post(url=f"{ENDPOINT}/collect",data={"charge_id":charge_id})ret.raise_for_status()returnret.json()exceptrequests.HTTPErrorase:raisePaymentError(f"Unable to collect payment for charge {charge_id}")frome@tracer.capture_lambda_handler(capture_error=False)defhandler(event:dict,context:LambdaContext)->str:charge_id=event.get("charge_id","")ret=collect_payment(charge_id=charge_id)returnret.get("receipt_id","")
importosimportrequestsfromaws_lambda_powertoolsimportTracerfromaws_lambda_powertools.utilities.typingimportLambdaContextENDPOINT=os.getenv("PAYMENT_API","")IGNORE_URLS=["/collect","/refund"]tracer=Tracer()tracer.ignore_endpoint(hostname=ENDPOINT,urls=IGNORE_URLS)tracer.ignore_endpoint(hostname=f"*.{ENDPOINT}",urls=IGNORE_URLS)# `<stage>.ENDPOINT`classPaymentError(Exception):...@tracer.capture_method(capture_error=False)defcollect_payment(charge_id:str)->dict:try:ret=requests.post(url=f"{ENDPOINT}/collect",data={"charge_id":charge_id})ret.raise_for_status()returnret.json()exceptrequests.HTTPErrorase:raisePaymentError(f"Unable to collect payment for charge {charge_id}")frome@tracer.capture_lambda_handler(capture_error=False)defhandler(event:dict,context:LambdaContext)->str:charge_id=event.get("charge_id","")ret=collect_payment(charge_id=charge_id)returnret.get("receipt_id","")
This snippet assumes you have aiohttp as a dependency
You can use aiohttp_trace_config function to create a valid aiohttp trace_config object. This is necessary since X-Ray utilizes aiohttp trace hooks to capture requests end-to-end.
Tracer keeps a copy of its configuration after the first initialization. This is useful for scenarios where you want to use Tracer in more than one location across your code base.
Warning: Import order matters when using Lambda Layers or multiple modules
Do not set auto_patch=False when reusing Tracer in Lambda Layers, or in multiple modules.
This can result in the first Tracer config being inherited by new instances, and their modules not being patched.
Tracer will automatically ignore imported modules that have been patched.
Use annotations on key operations to slice and dice traces, create unique views, and create metrics from it via Trace Groups
Use a namespace when adding metadata to group data more easily
Annotations and metadata are added to the current subsegment opened. If you want them in a specific subsegment, use a context manager via the escape hatch mechanism