Module aws_lambda_powertools.utilities.parser.types
Generics and other shared types used across parser
Classes
class Json
-
A special type wrapper which loads JSON before parsing.
You can use the
Json
data type to make Pydantic first load a raw JSON string before validating the loaded data into the parametrized type:from typing import Any, List from pydantic import BaseModel, Json, ValidationError class AnyJsonModel(BaseModel): json_obj: Json[Any] class ConstrainedJsonModel(BaseModel): json_obj: Json[List[int]] print(AnyJsonModel(json_obj='{"b": 1}')) #> json_obj={'b': 1} print(ConstrainedJsonModel(json_obj='[1, 2, 3]')) #> json_obj=[1, 2, 3] try: ConstrainedJsonModel(json_obj=12) except ValidationError as e: print(e) ''' 1 validation error for ConstrainedJsonModel json_obj JSON input should be string, bytes or bytearray [type=json_type, input_value=12, input_type=int] ''' try: ConstrainedJsonModel(json_obj='[a, b]') except ValidationError as e: print(e) ''' 1 validation error for ConstrainedJsonModel json_obj Invalid JSON: expected value at line 1 column 2 [type=json_invalid, input_value='[a, b]', input_type=str] ''' try: ConstrainedJsonModel(json_obj='["a", "b"]') except ValidationError as e: print(e) ''' 2 validation errors for ConstrainedJsonModel json_obj.0 Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='a', input_type=str] json_obj.1 Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='b', input_type=str] '''
When you dump the model using
model_dump
ormodel_dump_json
, the dumped value will be the result of validation, not the original JSON string. However, you can use the argumentround_trip=True
to get the original JSON string back:from typing import List from pydantic import BaseModel, Json class ConstrainedJsonModel(BaseModel): json_obj: Json[List[int]] print(ConstrainedJsonModel(json_obj='[1, 2, 3]').model_dump_json()) #> {"json_obj":[1,2,3]} print( ConstrainedJsonModel(json_obj='[1, 2, 3]').model_dump_json(round_trip=True) ) #> {"json_obj":"[1,2,3]"}
Expand source code
class Json: """A special type wrapper which loads JSON before parsing. You can use the `Json` data type to make Pydantic first load a raw JSON string before validating the loaded data into the parametrized type: ```python from typing import Any, List from pydantic import BaseModel, Json, ValidationError class AnyJsonModel(BaseModel): json_obj: Json[Any] class ConstrainedJsonModel(BaseModel): json_obj: Json[List[int]] print(AnyJsonModel(json_obj='{"b": 1}')) #> json_obj={'b': 1} print(ConstrainedJsonModel(json_obj='[1, 2, 3]')) #> json_obj=[1, 2, 3] try: ConstrainedJsonModel(json_obj=12) except ValidationError as e: print(e) ''' 1 validation error for ConstrainedJsonModel json_obj JSON input should be string, bytes or bytearray [type=json_type, input_value=12, input_type=int] ''' try: ConstrainedJsonModel(json_obj='[a, b]') except ValidationError as e: print(e) ''' 1 validation error for ConstrainedJsonModel json_obj Invalid JSON: expected value at line 1 column 2 [type=json_invalid, input_value='[a, b]', input_type=str] ''' try: ConstrainedJsonModel(json_obj='["a", "b"]') except ValidationError as e: print(e) ''' 2 validation errors for ConstrainedJsonModel json_obj.0 Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='a', input_type=str] json_obj.1 Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='b', input_type=str] ''' ``` When you dump the model using `model_dump` or `model_dump_json`, the dumped value will be the result of validation, not the original JSON string. However, you can use the argument `round_trip=True` to get the original JSON string back: ```python from typing import List from pydantic import BaseModel, Json class ConstrainedJsonModel(BaseModel): json_obj: Json[List[int]] print(ConstrainedJsonModel(json_obj='[1, 2, 3]').model_dump_json()) #> {"json_obj":[1,2,3]} print( ConstrainedJsonModel(json_obj='[1, 2, 3]').model_dump_json(round_trip=True) ) #> {"json_obj":"[1,2,3]"} ``` """ @classmethod def __class_getitem__(cls, item: AnyType) -> AnyType: return Annotated[item, cls()] @classmethod def __get_pydantic_core_schema__(cls, source: Any, handler: GetCoreSchemaHandler) -> core_schema.CoreSchema: if cls is source: return core_schema.json_schema(None) else: return core_schema.json_schema(handler(source)) def __repr__(self) -> str: return 'Json' def __hash__(self) -> int: return hash(type(self)) def __eq__(self, other: Any) -> bool: return type(other) is type(self)