Module aws_lambda_powertools.tracing
Tracing utility
Sub-modules
aws_lambda_powertools.tracing.base
aws_lambda_powertools.tracing.extensions
aws_lambda_powertools.tracing.tracer
Functions
def aiohttp_trace_config()
-
aiohttp extension for X-Ray (aws_xray_trace_config)
It expects you to have aiohttp as a dependency.
Returns
TraceConfig
- aiohttp trace config
Classes
class Tracer (service: str | None = None, disabled: bool | None = None, auto_patch: bool | None = None, patch_modules: Sequence[str] | None = None, provider: BaseProvider | None = None)
-
Tracer using AWS-XRay to provide decorators with known defaults for Lambda functions
When running locally, it detects whether it's running via SAM CLI, and if it is it returns dummy segments/subsegments instead.
By default, it patches all available libraries supported by X-Ray SDK. Patching is automatically disabled when running locally via SAM CLI or by any other means.
Ref: https://docs.aws.amazon.com/xray-sdk-for-python/latest/reference/thirdparty.html
Tracer keeps a copy of its configuration as it can be instantiated more than once. This is useful when you are using your own middlewares and want to utilize an existing Tracer. Make sure to set
auto_patch=False
in subsequent Tracer instances to avoid double patching.Environment Variables
POWERTOOLS_TRACE_DISABLED : str disable tracer (e.g.
"true", "True", "TRUE"
) POWERTOOLS_SERVICE_NAME : str service name POWERTOOLS_TRACER_CAPTURE_RESPONSE : str disable auto-capture response as metadata (e.g."true", "True", "TRUE"
) POWERTOOLS_TRACER_CAPTURE_ERROR : str disable auto-capture error as metadata (e.g."true", "True", "TRUE"
)Parameters
service
:str
- Service name that will be appended in all tracing metadata
auto_patch
:bool
- Patch existing imported modules during initialization, by default True
disabled
:bool
- Flag to explicitly disable tracing, useful when running/testing locally
Env POWERTOOLS_TRACE_DISABLED="true"
patch_modules
:Sequence[str] | None
- Tuple of modules supported by tracing provider to patch, by default all modules are patched
provider
:BaseProvider
- Tracing provider, by default it is aws_xray_sdk.core.xray_recorder
Returns
Tracer
- Tracer instance with imported modules patched
Example
A Lambda function using Tracer
from aws_lambda_powertools import Tracer tracer = Tracer(service="greeting") @tracer.capture_method def greeting(name: str) -> dict: return { "name": name } @tracer.capture_lambda_handler def handler(event: dict, context: Any) -> dict: print("Received event from Lambda...") response = greeting(name="Heitor") return response
Booking Lambda function using Tracer that adds additional annotation/metadata
from aws_lambda_powertools import Tracer tracer = Tracer(service="booking") @tracer.capture_method def confirm_booking(booking_id: str) -> dict: resp = add_confirmation(booking_id) tracer.put_annotation("BookingConfirmation", resp["requestId"]) tracer.put_metadata("Booking confirmation", resp) return resp @tracer.capture_lambda_handler def handler(event: dict, context: Any) -> dict: print("Received event from Lambda...") booking_id = event.get("booking_id") response = confirm_booking(booking_id=booking_id) return response
A Lambda function using service name via POWERTOOLS_SERVICE_NAME
export POWERTOOLS_SERVICE_NAME="booking" from aws_lambda_powertools import Tracer tracer = Tracer() @tracer.capture_lambda_handler def handler(event: dict, context: Any) -> dict: print("Received event from Lambda...") response = greeting(name="Lessa") return response
Reuse an existing instance of Tracer anywhere in the code
# lambda_handler.py from aws_lambda_powertools import Tracer tracer = Tracer() @tracer.capture_lambda_handler def handler(event: dict, context: Any) -> dict: ... # utils.py from aws_lambda_powertools import Tracer tracer = Tracer() ...
Limitations
- Async handler not supported
Expand source code
class Tracer: """Tracer using AWS-XRay to provide decorators with known defaults for Lambda functions When running locally, it detects whether it's running via SAM CLI, and if it is it returns dummy segments/subsegments instead. By default, it patches all available libraries supported by X-Ray SDK. Patching is automatically disabled when running locally via SAM CLI or by any other means. \n Ref: https://docs.aws.amazon.com/xray-sdk-for-python/latest/reference/thirdparty.html Tracer keeps a copy of its configuration as it can be instantiated more than once. This is useful when you are using your own middlewares and want to utilize an existing Tracer. Make sure to set `auto_patch=False` in subsequent Tracer instances to avoid double patching. Environment variables --------------------- POWERTOOLS_TRACE_DISABLED : str disable tracer (e.g. `"true", "True", "TRUE"`) POWERTOOLS_SERVICE_NAME : str service name POWERTOOLS_TRACER_CAPTURE_RESPONSE : str disable auto-capture response as metadata (e.g. `"true", "True", "TRUE"`) POWERTOOLS_TRACER_CAPTURE_ERROR : str disable auto-capture error as metadata (e.g. `"true", "True", "TRUE"`) Parameters ---------- service: str Service name that will be appended in all tracing metadata auto_patch: bool Patch existing imported modules during initialization, by default True disabled: bool Flag to explicitly disable tracing, useful when running/testing locally `Env POWERTOOLS_TRACE_DISABLED="true"` patch_modules: Sequence[str] | None Tuple of modules supported by tracing provider to patch, by default all modules are patched provider: BaseProvider Tracing provider, by default it is aws_xray_sdk.core.xray_recorder Returns ------- Tracer Tracer instance with imported modules patched Example ------- **A Lambda function using Tracer** from aws_lambda_powertools import Tracer tracer = Tracer(service="greeting") @tracer.capture_method def greeting(name: str) -> dict: return { "name": name } @tracer.capture_lambda_handler def handler(event: dict, context: Any) -> dict: print("Received event from Lambda...") response = greeting(name="Heitor") return response **Booking Lambda function using Tracer that adds additional annotation/metadata** from aws_lambda_powertools import Tracer tracer = Tracer(service="booking") @tracer.capture_method def confirm_booking(booking_id: str) -> dict: resp = add_confirmation(booking_id) tracer.put_annotation("BookingConfirmation", resp["requestId"]) tracer.put_metadata("Booking confirmation", resp) return resp @tracer.capture_lambda_handler def handler(event: dict, context: Any) -> dict: print("Received event from Lambda...") booking_id = event.get("booking_id") response = confirm_booking(booking_id=booking_id) return response **A Lambda function using service name via POWERTOOLS_SERVICE_NAME** export POWERTOOLS_SERVICE_NAME="booking" from aws_lambda_powertools import Tracer tracer = Tracer() @tracer.capture_lambda_handler def handler(event: dict, context: Any) -> dict: print("Received event from Lambda...") response = greeting(name="Lessa") return response **Reuse an existing instance of Tracer anywhere in the code** # lambda_handler.py from aws_lambda_powertools import Tracer tracer = Tracer() @tracer.capture_lambda_handler def handler(event: dict, context: Any) -> dict: ... # utils.py from aws_lambda_powertools import Tracer tracer = Tracer() ... Limitations ----------- * Async handler not supported """ _default_config: dict[str, Any] = { "service": "", "disabled": False, "auto_patch": True, "patch_modules": None, "provider": None, } _config = copy.copy(_default_config) def __init__( self, service: str | None = None, disabled: bool | None = None, auto_patch: bool | None = None, patch_modules: Sequence[str] | None = None, provider: BaseProvider | None = None, ): self.__build_config( service=service, disabled=disabled, auto_patch=auto_patch, patch_modules=patch_modules, provider=provider, ) self.provider: BaseProvider = self._config["provider"] self.disabled = self._config["disabled"] self.service = self._config["service"] self.auto_patch = self._config["auto_patch"] if self.disabled: self._disable_tracer_provider() if self.auto_patch: self.patch(modules=patch_modules) if self._is_xray_provider(): self._disable_xray_trace_batching() def put_annotation(self, key: str, value: str | numbers.Number | bool): """Adds annotation to existing segment or subsegment Parameters ---------- key : str Annotation key value : str | numbers.Number | bool Value for annotation Example ------- Custom annotation for a pseudo service named payment tracer = Tracer(service="payment") tracer.put_annotation("PaymentStatus", "CONFIRMED") """ if self.disabled: logger.debug("Tracing has been disabled, aborting put_annotation") return logger.debug(f"Annotating on key '{key}' with '{value}'") self.provider.put_annotation(key=key, value=value) def put_metadata(self, key: str, value: Any, namespace: str | None = None): """Adds metadata to existing segment or subsegment Parameters ---------- key : str Metadata key value : any Value for metadata namespace : str, optional Namespace that metadata will lie under, by default None Example ------- Custom metadata for a pseudo service named payment tracer = Tracer(service="payment") response = collect_payment() tracer.put_metadata("Payment collection", response) """ if self.disabled: logger.debug("Tracing has been disabled, aborting put_metadata") return namespace = namespace or self.service logger.debug(f"Adding metadata on key '{key}' with '{value}' at namespace '{namespace}'") self.provider.put_metadata(key=key, value=value, namespace=namespace) def patch(self, modules: Sequence[str] | None = None): """Patch modules for instrumentation. Patches all supported modules by default if none are given. Parameters ---------- modules : Sequence[str] | None List of modules to be patched, optional by default """ if self.disabled: logger.debug("Tracing has been disabled, aborting patch") return if modules is None: self.provider.patch_all() else: self.provider.patch(modules) def capture_lambda_handler( self, lambda_handler: Callable[[T, Any], Any] | Callable[[T, Any, Any], Any] | None = None, capture_response: bool | None = None, capture_error: bool | None = None, ): """Decorator to create subsegment for lambda handlers As Lambda follows (event, context) signature we can remove some of the boilerplate and also capture any exception any Lambda function throws or its response as metadata Parameters ---------- lambda_handler : Callable Method to annotate on capture_response : bool, optional Instructs tracer to not include handler's response as metadata capture_error : bool, optional Instructs tracer to not include handler's error as metadata, by default True Example ------- **Lambda function using capture_lambda_handler decorator** tracer = Tracer(service="payment") @tracer.capture_lambda_handler def handler(event, context): ... **Preventing Tracer to log response as metadata** tracer = Tracer(service="payment") @tracer.capture_lambda_handler(capture_response=False) def handler(event, context): ... Raises ------ err Exception raised by method """ # If handler is None we've been called with parameters # Return a partial function with args filled if lambda_handler is None: logger.debug("Decorator called with parameters") return functools.partial( self.capture_lambda_handler, capture_response=capture_response, capture_error=capture_error, ) lambda_handler_name = lambda_handler.__name__ capture_response = resolve_truthy_env_var_choice( env=os.getenv(constants.TRACER_CAPTURE_RESPONSE_ENV, "true"), choice=capture_response, ) capture_error = resolve_truthy_env_var_choice( env=os.getenv(constants.TRACER_CAPTURE_ERROR_ENV, "true"), choice=capture_error, ) @functools.wraps(lambda_handler) def decorate(event, context, **kwargs): with self.provider.in_subsegment(name=f"## {lambda_handler_name}") as subsegment: try: logger.debug("Calling lambda handler") response = lambda_handler(event, context, **kwargs) logger.debug("Received lambda handler response successfully") self._add_response_as_metadata( method_name=lambda_handler_name, data=response, subsegment=subsegment, capture_response=capture_response, ) except Exception as err: logger.exception(f"Exception received from {lambda_handler_name}") self._add_full_exception_as_metadata( method_name=lambda_handler_name, error=err, subsegment=subsegment, capture_error=capture_error, ) raise finally: global is_cold_start logger.debug("Annotating cold start") subsegment.put_annotation(key="ColdStart", value=is_cold_start) if is_cold_start: is_cold_start = False if self.service: subsegment.put_annotation(key="Service", value=self.service) return response return decorate # see #465 @overload def capture_method(self, method: AnyCallableT) -> AnyCallableT: ... # pragma: no cover @overload def capture_method( self, method: None = None, capture_response: bool | None = None, capture_error: bool | None = None, ) -> Callable[[AnyCallableT], AnyCallableT]: ... # pragma: no cover def capture_method( self, method: AnyCallableT | None = None, capture_response: bool | None = None, capture_error: bool | None = None, ) -> AnyCallableT: """Decorator to create subsegment for arbitrary functions It also captures both response and exceptions as metadata and creates a subsegment named `## <method_module.method_qualifiedname>` # see here: [Qualified name for classes and functions](https://peps.python.org/pep-3155/) When running [async functions concurrently](https://docs.python.org/3/library/asyncio-task.html#id6), methods may impact each others subsegment, and can trigger and AlreadyEndedException from X-Ray due to async nature. For this use case, either use `capture_method` only where `async.gather` is called, or use `in_subsegment_async` context manager via our escape hatch mechanism - See examples. Parameters ---------- method : Callable Method to annotate on capture_response : bool, optional Instructs tracer to not include method's response as metadata capture_error : bool, optional Instructs tracer to not include handler's error as metadata, by default True Example ------- **Custom function using capture_method decorator** tracer = Tracer(service="payment") @tracer.capture_method def some_function() **Custom async method using capture_method decorator** from aws_lambda_powertools import Tracer tracer = Tracer(service="booking") @tracer.capture_method async def confirm_booking(booking_id: str) -> dict: resp = call_to_booking_service() tracer.put_annotation("BookingConfirmation", resp["requestId"]) tracer.put_metadata("Booking confirmation", resp) return resp def lambda_handler(event: dict, context: Any) -> dict: booking_id = event.get("booking_id") asyncio.run(confirm_booking(booking_id=booking_id)) **Custom generator function using capture_method decorator** from aws_lambda_powertools import Tracer tracer = Tracer(service="booking") @tracer.capture_method def bookings_generator(booking_id): resp = call_to_booking_service() yield resp[0] yield resp[1] def lambda_handler(event: dict, context: Any) -> dict: gen = bookings_generator(booking_id=booking_id) result = list(gen) **Custom generator context manager using capture_method decorator** from aws_lambda_powertools import Tracer tracer = Tracer(service="booking") @tracer.capture_method @contextlib.contextmanager def booking_actions(booking_id): resp = call_to_booking_service() yield "example result" cleanup_stuff() def lambda_handler(event: dict, context: Any) -> dict: booking_id = event.get("booking_id") with booking_actions(booking_id=booking_id) as booking: result = booking **Tracing nested async calls** from aws_lambda_powertools import Tracer tracer = Tracer(service="booking") @tracer.capture_method async def get_identity(): ... @tracer.capture_method async def long_async_call(): ... @tracer.capture_method async def async_tasks(): await get_identity() ret = await long_async_call() return { "task": "done", **ret } **Safely tracing concurrent async calls with decorator** This may not needed once [this bug is closed](https://github.com/aws/aws-xray-sdk-python/issues/164) from aws_lambda_powertools import Tracer tracer = Tracer(service="booking") async def get_identity(): async with aioboto3.client("sts") as sts: account = await sts.get_caller_identity() return account async def long_async_call(): ... @tracer.capture_method async def async_tasks(): _, ret = await asyncio.gather(get_identity(), long_async_call(), return_exceptions=True) return { "task": "done", **ret } **Safely tracing each concurrent async calls with escape hatch** This may not needed once [this bug is closed](https://github.com/aws/aws-xray-sdk-python/issues/164) from aws_lambda_powertools import Tracer tracer = Tracer(service="booking") async def get_identity(): async tracer.provider.in_subsegment_async("## get_identity"): ... async def long_async_call(): async tracer.provider.in_subsegment_async("## long_async_call"): ... @tracer.capture_method async def async_tasks(): _, ret = await asyncio.gather(get_identity(), long_async_call(), return_exceptions=True) return { "task": "done", **ret } Raises ------ err Exception raised by method """ # If method is None we've been called with parameters # Return a partial function with args filled if method is None: logger.debug("Decorator called with parameters") return cast( AnyCallableT, functools.partial(self.capture_method, capture_response=capture_response, capture_error=capture_error), ) # Example: app.ClassA.get_all # noqa ERA001 # Valid characters can be found at http://docs.aws.amazon.com/xray/latest/devguide/xray-api-segmentdocuments.html method_name = sanitize_xray_segment_name(f"{method.__module__}.{method.__qualname__}") capture_response = resolve_truthy_env_var_choice( env=os.getenv(constants.TRACER_CAPTURE_RESPONSE_ENV, "true"), choice=capture_response, ) capture_error = resolve_truthy_env_var_choice( env=os.getenv(constants.TRACER_CAPTURE_ERROR_ENV, "true"), choice=capture_error, ) # Maintenance: Need a factory/builder here to simplify this now if inspect.iscoroutinefunction(method): return self._decorate_async_function( method=method, capture_response=capture_response, capture_error=capture_error, method_name=method_name, ) elif inspect.isgeneratorfunction(method): return self._decorate_generator_function( method=method, capture_response=capture_response, capture_error=capture_error, method_name=method_name, ) elif hasattr(method, "__wrapped__") and inspect.isgeneratorfunction(method.__wrapped__): return self._decorate_generator_function_with_context_manager( method=method, capture_response=capture_response, capture_error=capture_error, method_name=method_name, ) else: return self._decorate_sync_function( method=method, capture_response=capture_response, capture_error=capture_error, method_name=method_name, ) def _decorate_async_function( self, method: Callable, capture_response: bool | str | None = None, capture_error: bool | str | None = None, method_name: str | None = None, ): @functools.wraps(method) async def decorate(*args, **kwargs): async with self.provider.in_subsegment_async(name=f"## {method_name}") as subsegment: try: logger.debug(f"Calling method: {method_name}") response = await method(*args, **kwargs) self._add_response_as_metadata( method_name=method_name, data=response, subsegment=subsegment, capture_response=capture_response, ) except Exception as err: logger.exception(f"Exception received from '{method_name}' method") self._add_full_exception_as_metadata( method_name=method_name, error=err, subsegment=subsegment, capture_error=capture_error, ) raise return response return decorate def _decorate_generator_function( self, method: Callable, capture_response: bool | str | None = None, capture_error: bool | str | None = None, method_name: str | None = None, ): @functools.wraps(method) def decorate(*args, **kwargs): with self.provider.in_subsegment(name=f"## {method_name}") as subsegment: try: logger.debug(f"Calling method: {method_name}") result = yield from method(*args, **kwargs) self._add_response_as_metadata( method_name=method_name, data=result, subsegment=subsegment, capture_response=capture_response, ) except Exception as err: logger.exception(f"Exception received from '{method_name}' method") self._add_full_exception_as_metadata( method_name=method_name, error=err, subsegment=subsegment, capture_error=capture_error, ) raise return result return decorate def _decorate_generator_function_with_context_manager( self, method: Callable, capture_response: bool | str | None = None, capture_error: bool | str | None = None, method_name: str | None = None, ): @functools.wraps(method) @contextlib.contextmanager def decorate(*args, **kwargs): with self.provider.in_subsegment(name=f"## {method_name}") as subsegment: try: logger.debug(f"Calling method: {method_name}") with method(*args, **kwargs) as return_val: result = return_val yield result self._add_response_as_metadata( method_name=method_name, data=result, subsegment=subsegment, capture_response=capture_response, ) except Exception as err: logger.exception(f"Exception received from '{method_name}' method") self._add_full_exception_as_metadata( method_name=method_name, error=err, subsegment=subsegment, capture_error=capture_error, ) raise return decorate def _decorate_sync_function( self, method: AnyCallableT, capture_response: bool | str | None = None, capture_error: bool | str | None = None, method_name: str | None = None, ) -> AnyCallableT: @functools.wraps(method) def decorate(*args, **kwargs): with self.provider.in_subsegment(name=f"## {method_name}") as subsegment: try: logger.debug(f"Calling method: {method_name}") response = method(*args, **kwargs) self._add_response_as_metadata( method_name=method_name, data=response, subsegment=subsegment, capture_response=capture_response, ) except Exception as err: logger.exception(f"Exception received from '{method_name}' method") self._add_full_exception_as_metadata( method_name=method_name, error=err, subsegment=subsegment, capture_error=capture_error, ) raise return response return cast(AnyCallableT, decorate) def _add_response_as_metadata( self, method_name: str | None = None, data: Any | None = None, subsegment: BaseSegment | None = None, capture_response: bool | str | None = None, ): """Add response as metadata for given subsegment Parameters ---------- method_name : str, optional method name to add as metadata key, by default None data : Any, optional data to add as subsegment metadata, by default None subsegment : BaseSegment, optional existing subsegment to add metadata on, by default None capture_response : bool, optional Do not include response as metadata """ if data is None or not capture_response or subsegment is None: return subsegment.put_metadata(key=f"{method_name} response", value=data, namespace=self.service) def _add_full_exception_as_metadata( self, method_name: str, error: Exception, subsegment: BaseSegment, capture_error: bool | None = None, ): """Add full exception object as metadata for given subsegment Parameters ---------- method_name : str method name to add as metadata key, by default None error : Exception error to add as subsegment metadata, by default None subsegment : BaseSegment existing subsegment to add metadata on, by default None capture_error : bool, optional Do not include error as metadata, by default True """ if not capture_error: return subsegment.put_metadata(key=f"{method_name} error", value=error, namespace=self.service) @staticmethod def _disable_tracer_provider(): """Forcefully disables tracing""" logger.debug("Disabling tracer provider...") aws_xray_sdk.global_sdk_config.set_sdk_enabled(False) @staticmethod def _is_tracer_disabled() -> bool | str: """Detects whether trace has been disabled Tracing is automatically disabled in the following conditions: 1. Explicitly disabled via `TRACE_DISABLED` environment variable 2. Running in Lambda Emulators, or locally where X-Ray Daemon will not be listening 3. Explicitly disabled via constructor e.g `Tracer(disabled=True)` Returns ------- bool | str """ logger.debug("Verifying whether Tracing has been disabled") is_lambda_env = os.getenv(constants.LAMBDA_TASK_ROOT_ENV) is_lambda_sam_cli = os.getenv(constants.SAM_LOCAL_ENV) is_chalice_cli = os.getenv(constants.CHALICE_LOCAL_ENV) is_disabled = resolve_truthy_env_var_choice(env=os.getenv(constants.TRACER_DISABLED_ENV, "false")) if is_disabled: logger.debug("Tracing has been disabled via env var POWERTOOLS_TRACE_DISABLED") return is_disabled if not is_lambda_env or (is_lambda_sam_cli or is_chalice_cli): logger.debug("Running outside Lambda env; disabling Tracing") return True return False def __build_config( self, service: str | None = None, disabled: bool | None = None, auto_patch: bool | None = None, patch_modules: Sequence[str] | None = None, provider: BaseProvider | None = None, ): """Populates Tracer config for new and existing initializations""" is_disabled = disabled if disabled is not None else self._is_tracer_disabled() is_service = resolve_env_var_choice(choice=service, env=os.getenv(constants.SERVICE_NAME_ENV)) # Logic: Choose overridden option first, previously cached config, or default if available self._config["provider"] = provider or self._config["provider"] or self._patch_xray_provider() self._config["auto_patch"] = auto_patch if auto_patch is not None else self._config["auto_patch"] self._config["service"] = is_service or self._config["service"] self._config["disabled"] = is_disabled or self._config["disabled"] self._config["patch_modules"] = patch_modules or self._config["patch_modules"] @classmethod def _reset_config(cls): cls._config = copy.copy(cls._default_config) def _patch_xray_provider(self): # Due to Lazy Import, we need to activate `core` attrib via import # we also need to include `patch`, `patch_all` methods # to ensure patch calls are done via the provider from aws_xray_sdk.core import xray_recorder # type: ignore provider = xray_recorder provider.patch = aws_xray_sdk.core.patch provider.patch_all = aws_xray_sdk.core.patch_all return provider def _disable_xray_trace_batching(self): """Configure X-Ray SDK to send subsegment individually over batching Known issue: https://github.com/aws-powertools/powertools-lambda-python/issues/283 """ if self.disabled: logger.debug("Tracing has been disabled, aborting streaming override") return aws_xray_sdk.core.xray_recorder.configure(streaming_threshold=0) def _is_xray_provider(self): return "aws_xray_sdk" in self.provider.__module__ def ignore_endpoint(self, hostname: str | None = None, urls: list[str] | None = None): """If you want to ignore certain httplib requests you can do so based on the hostname or URL that is being requested. > NOTE: If the provider is not xray, nothing will be added to ignore list Documentation -------------- - https://github.com/aws/aws-xray-sdk-python#ignoring-httplib-requests Parameters ---------- hostname : Optional, str The hostname is matched using the Python fnmatch library which does Unix glob style matching. urls: Optional, list[str] List of urls to ignore. Example `tracer.ignore_endpoint(urls=["/ignored-url"])` """ if not self._is_xray_provider(): return from aws_xray_sdk.ext.httplib import add_ignored # type: ignore add_ignored(hostname=hostname, urls=urls)
Methods
def capture_lambda_handler(self, lambda_handler: Callable[[T, Any], Any] | Callable[[T, Any, Any], Any] | None = None, capture_response: bool | None = None, capture_error: bool | None = None)
-
Decorator to create subsegment for lambda handlers
As Lambda follows (event, context) signature we can remove some of the boilerplate and also capture any exception any Lambda function throws or its response as metadata
Parameters
lambda_handler
:Callable
- Method to annotate on
capture_response
:bool
, optional- Instructs tracer to not include handler's response as metadata
capture_error
:bool
, optional- Instructs tracer to not include handler's error as metadata, by default True
Example
Lambda function using capture_lambda_handler decorator
tracer = Tracer(service="payment") @tracer.capture_lambda_handler def handler(event, context): ...
Preventing Tracer to log response as metadata
tracer = Tracer(service="payment") @tracer.capture_lambda_handler(capture_response=False) def handler(event, context): ...
Raises
err
- Exception raised by method
def capture_method(self, method: AnyCallableT | None = None, capture_response: bool | None = None, capture_error: bool | None = None) ‑> ~AnyCallableT
-
Decorator to create subsegment for arbitrary functions
It also captures both response and exceptions as metadata and creates a subsegment named
## <method_module.method_qualifiedname>
see here: Qualified name for classes and functions
When running async functions concurrently, methods may impact each others subsegment, and can trigger and AlreadyEndedException from X-Ray due to async nature.
For this use case, either use
capture_method
only whereasync.gather
is called, or usein_subsegment_async
context manager via our escape hatch mechanism - See examples.Parameters
method
:Callable
- Method to annotate on
capture_response
:bool
, optional- Instructs tracer to not include method's response as metadata
capture_error
:bool
, optional- Instructs tracer to not include handler's error as metadata, by default True
Example
Custom function using capture_method decorator
tracer = Tracer(service="payment") @tracer.capture_method def some_function()
Custom async method using capture_method decorator
from aws_lambda_powertools import Tracer tracer = Tracer(service="booking") @tracer.capture_method async def confirm_booking(booking_id: str) -> dict: resp = call_to_booking_service() tracer.put_annotation("BookingConfirmation", resp["requestId"]) tracer.put_metadata("Booking confirmation", resp) return resp def lambda_handler(event: dict, context: Any) -> dict: booking_id = event.get("booking_id") asyncio.run(confirm_booking(booking_id=booking_id))
Custom generator function using capture_method decorator
from aws_lambda_powertools import Tracer tracer = Tracer(service="booking") @tracer.capture_method def bookings_generator(booking_id): resp = call_to_booking_service() yield resp[0] yield resp[1] def lambda_handler(event: dict, context: Any) -> dict: gen = bookings_generator(booking_id=booking_id) result = list(gen)
Custom generator context manager using capture_method decorator
from aws_lambda_powertools import Tracer tracer = Tracer(service="booking") @tracer.capture_method @contextlib.contextmanager def booking_actions(booking_id): resp = call_to_booking_service() yield "example result" cleanup_stuff() def lambda_handler(event: dict, context: Any) -> dict: booking_id = event.get("booking_id") with booking_actions(booking_id=booking_id) as booking: result = booking
Tracing nested async calls
from aws_lambda_powertools import Tracer tracer = Tracer(service="booking") @tracer.capture_method async def get_identity(): ... @tracer.capture_method async def long_async_call(): ... @tracer.capture_method async def async_tasks(): await get_identity() ret = await long_async_call() return { "task": "done", **ret }
Safely tracing concurrent async calls with decorator
This may not needed once this bug is closed
from aws_lambda_powertools import Tracer tracer = Tracer(service="booking") async def get_identity(): async with aioboto3.client("sts") as sts: account = await sts.get_caller_identity() return account async def long_async_call(): ... @tracer.capture_method async def async_tasks(): _, ret = await asyncio.gather(get_identity(), long_async_call(), return_exceptions=True) return { "task": "done", **ret }
Safely tracing each concurrent async calls with escape hatch
This may not needed once this bug is closed
from aws_lambda_powertools import Tracer tracer = Tracer(service="booking") async def get_identity(): async tracer.provider.in_subsegment_async("## get_identity"): ... async def long_async_call(): async tracer.provider.in_subsegment_async("## long_async_call"): ... @tracer.capture_method async def async_tasks(): _, ret = await asyncio.gather(get_identity(), long_async_call(), return_exceptions=True) return { "task": "done", **ret }
Raises
err
- Exception raised by method
def ignore_endpoint(self, hostname: str | None = None, urls: list[str] | None = None)
-
If you want to ignore certain httplib requests you can do so based on the hostname or URL that is being requested.
NOTE: If the provider is not xray, nothing will be added to ignore list
Documentation
Parameters
hostname
:Optional, str
- The hostname is matched using the Python fnmatch library which does Unix glob style matching.
urls
:Optional, list[str]
- List of urls to ignore. Example
tracer.ignore_endpoint(urls=["/ignored-url"])
def patch(self, modules: Sequence[str] | None = None)
-
Patch modules for instrumentation.
Patches all supported modules by default if none are given.
Parameters
modules
:Sequence[str] | None
- List of modules to be patched, optional by default
def put_annotation(self, key: str, value: str | numbers.Number | bool)
-
Adds annotation to existing segment or subsegment
Parameters
key
:str
- Annotation key
value
:str | numbers.Number | bool
- Value for annotation
Example
Custom annotation for a pseudo service named payment
tracer = Tracer(service="payment") tracer.put_annotation("PaymentStatus", "CONFIRMED")
def put_metadata(self, key: str, value: Any, namespace: str | None = None)
-
Adds metadata to existing segment or subsegment
Parameters
key
:str
- Metadata key
value
:any
- Value for metadata
namespace
:str
, optional- Namespace that metadata will lie under, by default None
Example
Custom metadata for a pseudo service named payment
tracer = Tracer(service="payment") response = collect_payment() tracer.put_metadata("Payment collection", response)