Module aws_lambda_powertools.event_handler.openapi.compat
Functions
def copy_field_info(*, field_info: FieldInfo, annotation: Any) ‑> pydantic.fields.FieldInfo
def create_body_model(*, fields: Sequence[ModelField], model_name: str) ‑> type[pydantic.main.BaseModel]
def field_annotation_is_complex(annotation: type[Any] | None) ‑> bool
def field_annotation_is_scalar(annotation: Any) ‑> bool
def field_annotation_is_scalar_sequence(annotation: type[Any] | None) ‑> bool
def field_annotation_is_sequence(annotation: type[Any] | None) ‑> bool
def get_annotation_from_field_info(annotation: Any, field_info: FieldInfo, field_name: str) ‑> Any
def get_compat_model_name_map(fields: list[ModelField])
def get_definitions(*, fields: list[ModelField], schema_generator: GenerateJsonSchema, model_name_map: ModelNameMap)
def get_missing_field_error(loc: tuple[str, ...]) ‑> dict[str, typing.Any]
def get_schema_from_model_field(*, field: ModelField, model_name_map: ModelNameMap, field_mapping: "dict[tuple[ModelField, Literal['validation', 'serialization']], JsonSchemaValue]")
def is_bytes_field(field: ModelField) ‑> bool
def is_bytes_or_nonable_bytes_annotation(annotation: Any) ‑> bool
def is_bytes_sequence_annotation(annotation: Any) ‑> bool
def is_bytes_sequence_field(field: ModelField) ‑> bool
def is_scalar_field(field: ModelField) ‑> bool
def is_scalar_sequence_field(field: ModelField) ‑> bool
def is_sequence_field(field: ModelField) ‑> bool
def model_json(model: BaseModel, **kwargs: Any) ‑> Any
def model_rebuild(model: type[BaseModel]) ‑> None
def serialize_sequence_value(*, field: ModelField, value: Any) ‑> Sequence[Any]
def value_is_sequence(value: Any) ‑> bool
Classes
class ErrorWrapper (*args, **kwargs)
-
Common base class for all non-exit exceptions.
Expand source code
class ErrorWrapper(Exception): pass
Ancestors
- builtins.Exception
- builtins.BaseException
class ModelField (field_info: FieldInfo, name: str, mode: "Literal['validation', 'serialization']" = 'validation')
-
ModelField(field_info: 'FieldInfo', name: 'str', mode: "Literal['validation', 'serialization']" = 'validation')
Expand source code
@dataclass class ModelField: field_info: FieldInfo name: str mode: Literal["validation", "serialization"] = "validation" @property def alias(self) -> str: value = self.field_info.alias return value if value is not None else self.name @property def required(self) -> bool: return self.field_info.is_required() @property def default(self) -> Any: return self.get_default() @property def type_(self) -> Any: return self.field_info.annotation def __post_init__(self) -> None: self._type_adapter: TypeAdapter[Any] = TypeAdapter( Annotated[self.field_info.annotation, self.field_info], ) def get_default(self) -> Any: if self.field_info.is_required(): return Undefined return self.field_info.get_default(call_default_factory=True) def serialize( self, value: Any, *, mode: Literal["json", "python"] = "json", include: IncEx | None = None, exclude: IncEx | None = None, by_alias: bool = True, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, ) -> Any: return self._type_adapter.dump_python( value, mode=mode, include=include, exclude=exclude, by_alias=by_alias, exclude_unset=exclude_unset, exclude_defaults=exclude_defaults, exclude_none=exclude_none, ) def validate( self, value: Any, values: dict[str, Any] = {}, *, loc: tuple[int | str, ...] = () ) -> tuple[Any, list[dict[str, Any]] | None]: try: return (self._type_adapter.validate_python(value, from_attributes=True), None) except ValidationError as exc: return None, _regenerate_error_with_loc(errors=exc.errors(), loc_prefix=loc) def __hash__(self) -> int: # Each ModelField is unique for our purposes return id(self)
Class variables
var field_info : pydantic.fields.FieldInfo
var mode : Literal['validation', 'serialization']
var name : str
Instance variables
prop alias : str
-
Expand source code
@property def alias(self) -> str: value = self.field_info.alias return value if value is not None else self.name
prop default : Any
-
Expand source code
@property def default(self) -> Any: return self.get_default()
prop required : bool
-
Expand source code
@property def required(self) -> bool: return self.field_info.is_required()
prop type_ : Any
-
Expand source code
@property def type_(self) -> Any: return self.field_info.annotation
Methods
def get_default(self) ‑> Any
def serialize(self, value: Any, *, mode: "Literal['json', 'python']" = 'json', include: IncEx | None = None, exclude: IncEx | None = None, by_alias: bool = True, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False)
def validate(self, value: Any, values: dict[str, Any] = {}, *, loc: tuple[int | str, ...] = ()) ‑> tuple[typing.Any, list[dict[str, typing.Any]] | None]
class RequestErrorModel (**data: Any)
-
Usage docs: https://docs.pydantic.dev/2.10/concepts/models/
A base class for creating Pydantic models.
Attributes
__class_vars__
- The names of the class variables defined on the model.
__private_attributes__
- Metadata about the private attributes of the model.
__signature__
- The synthesized
__init__
[Signature
][inspect.Signature] of the model. __pydantic_complete__
- Whether model building is completed, or if there are still undefined fields.
__pydantic_core_schema__
- The core schema of the model.
__pydantic_custom_init__
- Whether the model has a custom
__init__
function. __pydantic_decorators__
- Metadata containing the decorators defined on the model.
This replaces
Model.__validators__
andModel.__root_validators__
from Pydantic V1. __pydantic_generic_metadata__
- Metadata for generic models; contains data used for a similar purpose to args, origin, parameters in typing-module generics. May eventually be replaced by these.
__pydantic_parent_namespace__
- Parent namespace of the model, used for automatic rebuilding of models.
__pydantic_post_init__
- The name of the post-init method for the model, if defined.
__pydantic_root_model__
- Whether the model is a [
RootModel
][pydantic.root_model.RootModel]. __pydantic_serializer__
- The
pydantic-core
SchemaSerializer
used to dump instances of the model. __pydantic_validator__
- The
pydantic-core
SchemaValidator
used to validate instances of the model. __pydantic_fields__
- A dictionary of field names and their corresponding [
FieldInfo
][pydantic.fields.FieldInfo] objects. __pydantic_computed_fields__
- A dictionary of computed field names and their corresponding [
ComputedFieldInfo
][pydantic.fields.ComputedFieldInfo] objects. __pydantic_extra__
- A dictionary containing extra values, if [
extra
][pydantic.config.ConfigDict.extra] is set to'allow'
. __pydantic_fields_set__
- The names of fields explicitly set during instantiation.
__pydantic_private__
- Values of private attributes set on the model instance.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.Ancestors
- pydantic.main.BaseModel
Class variables
var model_config