Module aws_lambda_powertools.shared.functions
Functions
-
Expand source code
def abs_lambda_path(relative_path: str = "") -> str: """Return the absolute path from the given relative path to lambda handler. Parameters ---------- relative_path : str, optional The relative path to the lambda handler, by default an empty string. Returns ------- str The absolute path generated from the given relative path. If the environment variable LAMBDA_TASK_ROOT is set, it will use that value. Otherwise, it will use the current working directory. If the path is empty, it will return the current working directory. """ # Retrieve the LAMBDA_TASK_ROOT environment variable or default to an empty string current_working_directory = os.environ.get("LAMBDA_TASK_ROOT", "") or str(Path.cwd()) return str(Path(current_working_directory, relative_path))
Return the absolute path from the given relative path to lambda handler.
Parameters
relative_path
:str
, optional- The relative path to the lambda handler, by default an empty string.
Returns
str
- The absolute path generated from the given relative path. If the environment variable LAMBDA_TASK_ROOT is set, it will use that value. Otherwise, it will use the current working directory. If the path is empty, it will return the current working directory.
-
Expand source code
def base64_decode(value: str) -> bytes: try: logger.debug("Decoding base64 item to bytes") return base64.b64decode(value) except (BinAsciiError, TypeError): raise ValueError("base64 decode failed - is this base64 encoded string?")
-
Expand source code
def bytes_to_base64_string(value: bytes) -> str: try: logger.debug("Encoding bytes to base64 string") return base64.b64encode(value).decode() except TypeError: raise ValueError(f"base64 encoding failed - is this bytes data? type: {type(value)}")
-
Expand source code
def bytes_to_string(value: bytes) -> str: try: return value.decode("utf-8") except (BinAsciiError, TypeError): raise ValueError("base64 UTF-8 decode failed")
-
Expand source code
def dataclass_to_dict(data) -> dict: """Dump standard dataclass as dict. Note we use lazy import to prevent bloating other code parts. Parameters ---------- data: dataclass Dataclass Returns ------- dict: Pydantic model serialized to dict """ import dataclasses return dataclasses.asdict(data)
Dump standard dataclass as dict.
Note we use lazy import to prevent bloating other code parts.
Parameters
data
:dataclass
- Dataclass
Returns
dict:
- Pydantic model serialized to dict
-
Expand source code
def extract_event_from_common_models(data: Any) -> dict | Any: """Extract raw event from common types used in Powertools If event cannot be extracted, return received data as is. Common models: - Event Source Data Classes (DictWrapper) - Python Dataclasses - Pydantic Models (BaseModel) Parameters ---------- data : Any Original event, a potential instance of DictWrapper/BaseModel/Dataclass Notes ----- Why not using static type for function argument? DictWrapper would cause a circular import. Pydantic BaseModel could cause a ModuleNotFound or trigger init reflection worsening cold start. """ # Short-circuit most common type first for perf if isinstance(data, dict): return data # Is it an Event Source Data Class? if getattr(data, "raw_event", None): return data.raw_event # Is it a Pydantic Model? if is_pydantic(data): return pydantic_to_dict(data) # Is it a Dataclass? if is_dataclass(data): return dataclass_to_dict(data) # Return as is return data
Extract raw event from common types used in Powertools
If event cannot be extracted, return received data as is.
Common models:
- Event Source Data Classes (DictWrapper) - Python Dataclasses - Pydantic Models (BaseModel)
Parameters
data
:Any
- Original event, a potential instance of DictWrapper/BaseModel/Dataclass
Notes
Why not using static type for function argument?
DictWrapper would cause a circular import. Pydantic BaseModel could cause a ModuleNotFound or trigger init reflection worsening cold start.
-
Expand source code
def is_dataclass(data) -> bool: """Whether data is a dataclass Parameters ---------- data: dataclass Dataclass obj Returns ------- bool Whether it's a Dataclass """ return getattr(data, "__dataclass_fields__", False)
Whether data is a dataclass
Parameters
data
:dataclass
- Dataclass obj
Returns
bool
- Whether it's a Dataclass
-
Expand source code
def is_pydantic(data) -> bool: """Whether data is a Pydantic model by checking common field available in v1/v2 Parameters ---------- data: BaseModel Pydantic model Returns ------- bool Whether it's a Pydantic model """ return getattr(data, "json", False)
Whether data is a Pydantic model by checking common field available in v1/v2
Parameters
data
:BaseModel
- Pydantic model
Returns
bool
- Whether it's a Pydantic model
-
Expand source code
def powertools_debug_is_set() -> bool: is_on = strtobool(os.getenv(constants.POWERTOOLS_DEBUG_ENV, "0")) if is_on: warnings.warn("POWERTOOLS_DEBUG environment variable is enabled. Setting logging level to DEBUG.", stacklevel=2) return True return False
-
Expand source code
def powertools_dev_is_set() -> bool: is_on = strtobool(os.getenv(constants.POWERTOOLS_DEV_ENV, "0")) if is_on: warnings.warn( "POWERTOOLS_DEV environment variable is enabled. Increasing verbosity across utilities.", stacklevel=2, ) return True return False
-
Expand source code
def pydantic_to_dict(data) -> dict: """Dump Pydantic model v1 and v2 as dict. Note we use lazy import since Pydantic is an optional dependency. Parameters ---------- data: BaseModel Pydantic model Returns ------- dict: Pydantic model serialized to dict """ from aws_lambda_powertools.event_handler.openapi.compat import _model_dump return _model_dump(data)
Dump Pydantic model v1 and v2 as dict.
Note we use lazy import since Pydantic is an optional dependency.
Parameters
data
:BaseModel
- Pydantic model
Returns
dict:
- Pydantic model serialized to dict
-
Expand source code
def resolve_env_var_choice( env: str | None = None, choice: str | float | None = None, ) -> str | float | None: """Pick explicit choice over env, if available, otherwise return env value received NOTE: Environment variable should be resolved by the caller. Parameters ---------- env : str, Optional environment variable actual value choice : str|float, optional explicit choice Returns ------- choice : str, Optional resolved choice as either bool or environment value """ return choice if choice is not None else env
Pick explicit choice over env, if available, otherwise return env value received
NOTE: Environment variable should be resolved by the caller.
Parameters
env
:str, Optional
- environment variable actual value
choice
:str|float
, optional- explicit choice
Returns
choice
:str, Optional
- resolved choice as either bool or environment value
-
Expand source code
def resolve_max_age(env: str, choice: int | None) -> int: """Resolve max age value""" return choice if choice is not None else int(env)
Resolve max age value
-
Expand source code
def resolve_truthy_env_var_choice(env: str, choice: bool | None = None) -> bool: """Pick explicit choice over truthy env value, if available, otherwise return truthy env value NOTE: Environment variable should be resolved by the caller. Parameters ---------- env : str environment variable actual value choice : bool explicit choice Returns ------- choice : str resolved choice as either bool or environment value """ return choice if choice is not None else strtobool(env)
Pick explicit choice over truthy env value, if available, otherwise return truthy env value
NOTE: Environment variable should be resolved by the caller.
Parameters
env
:str
- environment variable actual value
choice
:bool
- explicit choice
Returns
choice
:str
- resolved choice as either bool or environment value
-
Expand source code
def sanitize_xray_segment_name(name: str) -> str: return re.sub(constants.INVALID_XRAY_NAME_CHARACTERS, "", name)
-
Expand source code
def slice_dictionary(data: dict, chunk_size: int) -> Generator[dict, None, None]: for _ in range(0, len(data), chunk_size): yield {dict_key: data[dict_key] for dict_key in itertools.islice(data, chunk_size)}
-
Expand source code
def strtobool(value: str) -> bool: """Convert a string representation of truth to True or False. True values are 'y', 'yes', 't', 'true', 'on', and '1'; false values are 'n', 'no', 'f', 'false', 'off', and '0'. Raises ValueError if 'value' is anything else. > note:: Copied from distutils.util. """ value = value.lower() if value in ("1", "y", "yes", "t", "true", "on"): return True if value in ("0", "n", "no", "f", "false", "off"): return False raise ValueError(f"invalid truth value {value!r}")
Convert a string representation of truth to True or False.
True values are 'y', 'yes', 't', 'true', 'on', and '1'; false values are 'n', 'no', 'f', 'false', 'off', and '0'. Raises ValueError if 'value' is anything else.
note:: Copied from distutils.util.