Base
Metrics utility
Usage Documentation
CLASS | DESCRIPTION |
---|---|
MetricManager |
Base class for metric functionality (namespace, metric, dimension, serialization) |
SingleMetric |
SingleMetric creates an EMF object with a single metric. |
FUNCTION | DESCRIPTION |
---|---|
single_metric |
Context manager to simplify creation of a single metric |
MetricManager ¶
MetricManager(
metric_set: dict[str, Any] | None = None,
dimension_set: dict | None = None,
namespace: str | None = None,
metadata_set: dict[str, Any] | None = None,
service: str | None = None,
)
Base class for metric functionality (namespace, metric, dimension, serialization)
MetricManager creates metrics asynchronously thanks to CloudWatch Embedded Metric Format (EMF). CloudWatch EMF can create up to 100 metrics per EMF object and metrics, dimensions, and namespace created via MetricManager will adhere to the schema, will be serialized and validated against EMF Schema.
Use aws_lambda_powertools.metrics.metrics.Metrics
or
aws_lambda_powertools.metrics.metric.single_metric
to create EMF metrics.
Environment variables
POWERTOOLS_METRICS_NAMESPACE : str metric namespace to be set for all metrics POWERTOOLS_SERVICE_NAME : str service name used for default dimension
RAISES | DESCRIPTION |
---|---|
MetricUnitError
|
When metric unit isn't supported by CloudWatch |
MetricResolutionError
|
When metric resolution isn't supported by CloudWatch |
MetricValueError
|
When metric value isn't a number |
SchemaValidationError
|
When metric object fails EMF schema validation |
METHOD | DESCRIPTION |
---|---|
add_dimension |
Adds given dimension to all metrics |
add_metadata |
Adds high cardinal metadata for metrics object |
add_metric |
Adds given metric |
flush_metrics |
Manually flushes the metrics. This is normally not necessary, |
log_metrics |
Decorator to serialize and publish metrics at the end of a function execution. |
serialize_metric_set |
Serializes metric and dimensions set |
set_timestamp |
Set the timestamp for the metric. |
Source code in aws_lambda_powertools/metrics/base.py
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
|
add_dimension ¶
add_dimension(name: str, value: str) -> None
Adds given dimension to all metrics
Example
Add a metric dimensions
1 |
|
PARAMETER | DESCRIPTION |
---|---|
name
|
Dimension name
TYPE:
|
value
|
Dimension value
TYPE:
|
Source code in aws_lambda_powertools/metrics/base.py
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
|
add_metadata ¶
add_metadata(key: str, value: Any) -> None
Adds high cardinal metadata for metrics object
This will not be available during metrics visualization. Instead, this will be searchable through logs.
If you're looking to add metadata to filter metrics, then use add_dimensions method.
Example
Add metrics metadata
1 |
|
PARAMETER | DESCRIPTION |
---|---|
key
|
Metadata key
TYPE:
|
value
|
Metadata value
TYPE:
|
Source code in aws_lambda_powertools/metrics/base.py
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
|
add_metric ¶
add_metric(
name: str,
unit: MetricUnit | str,
value: float,
resolution: MetricResolution | int = 60,
) -> None
Adds given metric
Example
Add given metric using MetricUnit enum
1 |
|
Add given metric using plain string as value unit
1 |
|
Add given metric with MetricResolution non default value
1 |
|
PARAMETER | DESCRIPTION |
---|---|
name
|
Metric name
TYPE:
|
unit
|
TYPE:
|
value
|
Metric value
TYPE:
|
resolution
|
TYPE:
|
RAISES | DESCRIPTION |
---|---|
MetricUnitError
|
When metric unit is not supported by CloudWatch |
MetricResolutionError
|
When metric resolution is not supported by CloudWatch |
Source code in aws_lambda_powertools/metrics/base.py
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
|
flush_metrics ¶
flush_metrics(raise_on_empty_metrics: bool = False) -> None
Manually flushes the metrics. This is normally not necessary, unless you're running on other runtimes besides Lambda, where the @log_metrics decorator already handles things for you.
PARAMETER | DESCRIPTION |
---|---|
raise_on_empty_metrics
|
raise exception if no metrics are emitted, by default False
TYPE:
|
Source code in aws_lambda_powertools/metrics/base.py
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
|
log_metrics ¶
log_metrics(
lambda_handler: (
Callable[[dict, Any], Any]
| Callable[[dict, Any, dict | None], Any]
| None
) = None,
capture_cold_start_metric: bool = False,
raise_on_empty_metrics: bool = False,
default_dimensions: dict[str, str] | None = None,
)
Decorator to serialize and publish metrics at the end of a function execution.
Be aware that the log_metrics *does call the decorated function (e.g. lambda_handler).
Example
Lambda function using tracer and metrics decorators
1 2 3 4 5 6 7 8 9 |
|
PARAMETER | DESCRIPTION |
---|---|
lambda_handler
|
lambda function handler, by default None |
capture_cold_start_metric
|
captures cold start metric, by default False
TYPE:
|
raise_on_empty_metrics
|
raise exception if no metrics are emitted, by default False
TYPE:
|
default_dimensions
|
metric dimensions as key=value that will always be present |
RAISES | DESCRIPTION |
---|---|
e
|
Propagate error received |
Source code in aws_lambda_powertools/metrics/base.py
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
|
serialize_metric_set ¶
serialize_metric_set(
metrics: dict | None = None,
dimensions: dict | None = None,
metadata: dict | None = None,
) -> dict
Serializes metric and dimensions set
PARAMETER | DESCRIPTION |
---|---|
metrics
|
Dictionary of metrics to serialize, by default None
TYPE:
|
dimensions
|
Dictionary of dimensions to serialize, by default None
TYPE:
|
metadata
|
Dictionary of metadata to serialize, by default None
TYPE:
|
Example
Serialize metrics into EMF format
1 2 3 |
|
RETURNS | DESCRIPTION |
---|---|
dict
|
Serialized metrics following EMF specification |
RAISES | DESCRIPTION |
---|---|
SchemaValidationError
|
Raised when serialization fail schema validation |
Source code in aws_lambda_powertools/metrics/base.py
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
|
set_timestamp ¶
set_timestamp(timestamp: int | datetime.datetime)
Set the timestamp for the metric.
Source code in aws_lambda_powertools/metrics/base.py
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
|
SingleMetric ¶
SingleMetric(
metric_set: dict[str, Any] | None = None,
dimension_set: dict | None = None,
namespace: str | None = None,
metadata_set: dict[str, Any] | None = None,
service: str | None = None,
)
Bases: MetricManager
SingleMetric creates an EMF object with a single metric.
EMF specification doesn't allow metrics with different dimensions. SingleMetric overrides MetricManager's add_metric method to do just that.
Use single_metric
when you need to create metrics with different dimensions,
otherwise aws_lambda_powertools.metrics.metrics.Metrics
is
a more cost effective option
Environment variables
POWERTOOLS_METRICS_NAMESPACE : str metric namespace
Example
Creates cold start metric with function_version as dimension
1 2 3 4 5 6 7 8 |
|
PARAMETER | DESCRIPTION |
---|---|
MetricManager
|
Inherits from
TYPE:
|
METHOD | DESCRIPTION |
---|---|
add_metric |
Method to prevent more than one metric being created |
Source code in aws_lambda_powertools/metrics/base.py
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
|
add_metric ¶
add_metric(
name: str,
unit: MetricUnit | str,
value: float,
resolution: MetricResolution | int = 60,
) -> None
Method to prevent more than one metric being created
PARAMETER | DESCRIPTION |
---|---|
name
|
Metric name (e.g. BookingConfirmation)
TYPE:
|
unit
|
Metric unit (e.g. "Seconds", MetricUnit.Seconds)
TYPE:
|
value
|
Metric value
TYPE:
|
resolution
|
Metric resolution (e.g. 60, MetricResolution.Standard)
TYPE:
|
Source code in aws_lambda_powertools/metrics/base.py
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 |
|
single_metric ¶
single_metric(
name: str,
unit: MetricUnit,
value: float,
resolution: MetricResolution | int = 60,
namespace: str | None = None,
default_dimensions: dict[str, str] | None = None,
) -> Generator[SingleMetric, None, None]
Context manager to simplify creation of a single metric
Example
Creates cold start metric with function_version as dimension
1 2 3 4 5 6 |
|
Same as above but set namespace using environment variable
1 2 3 4 5 6 7 8 |
|
PARAMETER | DESCRIPTION |
---|---|
name
|
Metric name
TYPE:
|
unit
|
TYPE:
|
resolution
|
TYPE:
|
value
|
Metric value
TYPE:
|
namespace
|
Namespace for metrics
TYPE:
|
default_dimensions
|
Metric dimensions as key=value that will always be present |
YIELDS | DESCRIPTION |
---|---|
SingleMetric
|
SingleMetric class instance |
RAISES | DESCRIPTION |
---|---|
MetricUnitError
|
When metric metric isn't supported by CloudWatch |
MetricResolutionError
|
When metric resolution isn't supported by CloudWatch |
MetricValueError
|
When metric value isn't a number |
SchemaValidationError
|
When metric object fails EMF schema validation |
Source code in aws_lambda_powertools/metrics/base.py
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 |
|