Skip to content

Batch Processing

The batch processing utility handles partial failures when processing batches from Amazon SQS, Amazon Kinesis Data Streams, and Amazon DynamoDB Streams.

stateDiagram-v2
    direction LR
    BatchSource: Amazon SQS <br/><br/> Amazon Kinesis Data Streams <br/><br/> Amazon DynamoDB Streams <br/><br/>
    LambdaInit: Lambda invocation
    BatchProcessor: Batch Processor
    RecordHandler: Record Handler function
    YourLogic: Your logic to process each batch item
    LambdaResponse: Lambda response

    BatchSource --> LambdaInit

    LambdaInit --> BatchProcessor
    BatchProcessor --> RecordHandler

    state BatchProcessor {
        [*] --> RecordHandler: Your function
        RecordHandler --> YourLogic
    }

    RecordHandler --> BatchProcessor: Collect results
    BatchProcessor --> LambdaResponse: Report items that failed processing

Key features

  • Reports batch item failures to reduce number of retries for a record upon errors
  • Simple interface to process each batch record
  • Build your own batch processor by extending primitives

Background

When using SQS, Kinesis Data Streams, or DynamoDB Streams as a Lambda event source, your Lambda functions are triggered with a batch of messages.

If your function fails to process any message from the batch, the entire batch returns to your queue or stream. This same batch is then retried until either condition happens first: a) your Lambda function returns a successful response, b) record reaches maximum retry attempts, or c) when records expire.

journey
  section Conditions
    Successful response: 5: Success
    Maximum retries: 3: Failure
    Records expired: 1: Failure

This behavior changes when you enable ReportBatchItemFailures feature in your Lambda function event source configuration:

  • SQS queues. Only messages reported as failure will return to the queue for a retry, while successful ones will be deleted.
  • Kinesis data streams and DynamoDB streams. Single reported failure will use its sequence number as the stream checkpoint. Multiple reported failures will use the lowest sequence number as checkpoint.
Warning: This utility lowers the chance of processing records more than once; it does not guarantee it

We recommend implementing processing logic in an idempotent manner wherever possible.

You can find more details on how Lambda works with either SQS, Kinesis, or DynamoDB in the AWS Documentation.

Getting started

Installation

Install the library in your project

1
npm i @aws-lambda-powertools/batch

For this feature to work, you need to (1) configure your Lambda function event source to use ReportBatchItemFailures, and (2) return a specific response to report which records failed to be processed.

Use your preferred deployment framework to set the correct configuration while this utility handles the correct response to be returned.

Required resources

The remaining sections of the documentation will rely on these samples. For completeness, this demonstrates IAM permissions and Dead Letter Queue where batch records will be sent after 2 retries.

You do not need any additional IAM permissions to use this utility, except for what each event source requires.

template.yaml
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: partial batch response sample

Globals:
  Function:
    Timeout: 5
    MemorySize: 256
    Runtime: nodejs22.x
    Tracing: Active
    Environment:
      Variables:
        POWERTOOLS_LOG_LEVEL: INFO
        POWERTOOLS_SERVICE_NAME: hello

Resources:
  HelloWorldFunction:
    Type: AWS::Serverless::Function
    Properties:
      Handler: index.handler
      CodeUri: hello_world
      Policies:
        - SQSPollerPolicy:
            QueueName: !GetAtt SampleQueue.QueueName
      Events:
        Batch:
          Type: SQS
          Properties:
            Queue: !GetAtt SampleQueue.Arn
            FunctionResponseTypes:
              - ReportBatchItemFailures

  SampleDLQ:
    Type: AWS::SQS::Queue

  SampleQueue:
    Type: AWS::SQS::Queue
    Properties:
      VisibilityTimeout: 30 # Fn timeout * 6
      SqsManagedSseEnabled: true
      RedrivePolicy:
        maxReceiveCount: 2
        deadLetterTargetArn: !GetAtt SampleDLQ.Arn
template.yaml
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: partial batch response sample

Globals:
  Function:
    Timeout: 5
    MemorySize: 256
    Runtime: nodejs22.x
    Tracing: Active
    Environment:
      Variables:
        LOG_LEVEL: INFO
        POWERTOOLS_SERVICE_NAME: hello

Resources:
  HelloWorldFunction:
    Type: AWS::Serverless::Function
    Properties:
      Handler: index.handler
      CodeUri: hello_world
      Policies:
        # Lambda Destinations require additional permissions
        # to send failure records to DLQ from Kinesis/DynamoDB
        - Version: '2012-10-17'
          Statement:
            Effect: 'Allow'
            Action:
              - sqs:GetQueueAttributes
              - sqs:GetQueueUrl
              - sqs:SendMessage
            Resource: !GetAtt SampleDLQ.Arn
      Events:
        KinesisStream:
          Type: Kinesis
          Properties:
            Stream: !GetAtt SampleStream.Arn
            BatchSize: 100
            StartingPosition: LATEST
            MaximumRetryAttempts: 2
            DestinationConfig:
              OnFailure:
                Destination: !GetAtt SampleDLQ.Arn
            FunctionResponseTypes:
              - ReportBatchItemFailures

  SampleDLQ:
    Type: AWS::SQS::Queue

  SampleStream:
    Type: AWS::Kinesis::Stream
    Properties:
      ShardCount: 1
      StreamEncryption:
        EncryptionType: KMS
        KeyId: alias/aws/kinesis
template.yaml
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: partial batch response sample

Globals:
  Function:
    Timeout: 5
    MemorySize: 256
    Runtime: nodejs22.x
    Tracing: Active
    Environment:
      Variables:
        POWERTOOLS_LOG_LEVEL: INFO
        POWERTOOLS_SERVICE_NAME: hello

Resources:
  HelloWorldFunction:
    Type: AWS::Serverless::Function
    Properties:
      Handler: index.handler
      CodeUri: hello_world
      Policies:
        # Lambda Destinations require additional permissions
        # to send failure records from Kinesis/DynamoDB
        - Version: '2012-10-17'
          Statement:
            Effect: 'Allow'
            Action:
              - sqs:GetQueueAttributes
              - sqs:GetQueueUrl
              - sqs:SendMessage
            Resource: !GetAtt SampleDLQ.Arn
      Events:
        DynamoDBStream:
          Type: DynamoDB
          Properties:
            Stream: !GetAtt SampleTable.StreamArn
            StartingPosition: LATEST
            MaximumRetryAttempts: 2
            DestinationConfig:
              OnFailure:
                Destination: !GetAtt SampleDLQ.Arn
            FunctionResponseTypes:
              - ReportBatchItemFailures

  SampleDLQ:
    Type: AWS::SQS::Queue

  SampleTable:
    Type: AWS::DynamoDB::Table
    Properties:
      BillingMode: PAY_PER_REQUEST
      AttributeDefinitions:
        - AttributeName: pk
          AttributeType: S
        - AttributeName: sk
          AttributeType: S
      KeySchema:
        - AttributeName: pk
          KeyType: HASH
        - AttributeName: sk
          KeyType: RANGE
      SSESpecification:
        SSEEnabled: true
      StreamSpecification:
        StreamViewType: NEW_AND_OLD_IMAGES

Processing messages from SQS

Processing batches from SQS works in three stages:

  1. Instantiate BatchProcessor and choose EventType.SQS for the event type
  2. Define your function to handle each batch record, and use the SQSRecord type annotation for autocompletion
  3. Use processPartialResponse to kick off processing
Info

This code example optionally uses Logger for completion.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
 import {
   BatchProcessor,
   EventType,
   processPartialResponse,
 } from '@aws-lambda-powertools/batch';
 import { Logger } from '@aws-lambda-powertools/logger';
 import type { SQSHandler, SQSRecord } from 'aws-lambda';

 const processor = new BatchProcessor(EventType.SQS); // (1)!
 const logger = new Logger();

 const recordHandler = async (record: SQSRecord): Promise<void> => { // (2)!
   const payload = record.body;
   if (payload) {
     const item = JSON.parse(payload);
     logger.info('Processed item', { item });
   }
 };

 export const handler: SQSHandler = async (event, context) =>
   processPartialResponse(event, recordHandler, processor, { // (3)!
     context,
   });
  1. Step 1. Creates a partial failure batch processor for SQS queues. See partial failure mechanics for details
  2. Step 2. Defines a function to receive one record at a time from the batch
  3. Step 3. Kicks off processing

The second record failed to be processed, therefore the processor added its message ID in the response.

1
2
3
4
5
6
7
{
  "batchItemFailures": [
    {
      "itemIdentifier": "244fc6b4-87a3-44ab-83d2-361172410c3a"
    }
  ]
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
{
  "Records": [
    {
      "messageId": "059f36b4-87a3-44ab-83d2-661975830a7d",
      "receiptHandle": "AQEBwJnKyrHigUMZj6rYigCgxlaS3SLy0a",
      "body": "{\"Message\": \"success\"}",
      "attributes": {
        "ApproximateReceiveCount": "1",
        "SentTimestamp": "1545082649183",
        "SenderId": "AIDAIENQZJOLO23YVJ4VO",
        "ApproximateFirstReceiveTimestamp": "1545082649185"
      },
      "messageAttributes": {},
      "md5OfBody": "e4e68fb7bd0e697a0ae8f1bb342846b3",
      "eventSource": "aws:sqs",
      "eventSourceARN": "arn:aws:sqs:us-east-2: 123456789012:my-queue",
      "awsRegion": "us-east-1"
    },
    {
      "messageId": "244fc6b4-87a3-44ab-83d2-361172410c3a",
      "receiptHandle": "AQEBwJnKyrHigUMZj6rYigCgxlaS3SLy0a",
      "body": "SGVsbG8sIHRoaXMgaXMgYSB0ZXN0Lg==",
      "attributes": {
        "ApproximateReceiveCount": "1",
        "SentTimestamp": "1545082649183",
        "SenderId": "AIDAIENQZJOLO23YVJ4VO",
        "ApproximateFirstReceiveTimestamp": "1545082649185"
      },
      "messageAttributes": {},
      "md5OfBody": "e4e68fb7bd0e697a0ae8f1bb342846b3",
      "eventSource": "aws:sqs",
      "eventSourceARN": "arn:aws:sqs:us-east-2: 123456789012:my-queue",
      "awsRegion": "us-east-1"
    }
  ]
}

FIFO queues

When using SQS FIFO queues, a batch may include messages from different group IDs.

By default, we will stop processing at the first failure and mark unprocessed messages as failed to preserve ordering. However, this behavior may not be optimal for customers who wish to proceed with processing messages from a different group ID.

Enable the skipGroupOnError option for seamless processing of messages from various group IDs. This setup ensures that messages from a failed group ID are sent back to SQS, enabling uninterrupted processing of messages from the subsequent group ID.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
import {
  SqsFifoPartialProcessor,
  processPartialResponseSync,
} from '@aws-lambda-powertools/batch';
import { Logger } from '@aws-lambda-powertools/logger';
import type { SQSHandler, SQSRecord } from 'aws-lambda';

const processor = new SqsFifoPartialProcessor(); // (1)!
const logger = new Logger();

const recordHandler = (record: SQSRecord): void => {
  const payload = record.body;
  if (payload) {
    const item = JSON.parse(payload);
    logger.info('Processed item', { item });
  }
};

export const handler: SQSHandler = async (event, context) =>
  processPartialResponseSync(event, recordHandler, processor, {
    context,
  });
  1. Step 1. Creates a partial failure batch processor for SQS FIFO queues. See partial failure mechanics for details
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
import {
  SqsFifoPartialProcessorAsync,
  processPartialResponse,
} from '@aws-lambda-powertools/batch';
import { Logger } from '@aws-lambda-powertools/logger';
import type { SQSHandler, SQSRecord } from 'aws-lambda';

const processor = new SqsFifoPartialProcessorAsync();
const logger = new Logger();

const recordHandler = async (record: SQSRecord): Promise<void> => {
  const payload = record.body;
  if (payload) {
    const item = JSON.parse(payload);
    logger.info('Processed item', { item });
  }
};

export const handler: SQSHandler = async (event, context) =>
  processPartialResponse(event, recordHandler, processor, {
    context,
  });
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import {
  SqsFifoPartialProcessor,
  processPartialResponseSync,
} from '@aws-lambda-powertools/batch';
import { Logger } from '@aws-lambda-powertools/logger';
import type {
  Context,
  SQSBatchResponse,
  SQSEvent,
  SQSRecord,
} from 'aws-lambda';

const processor = new SqsFifoPartialProcessor();
const logger = new Logger();

const recordHandler = (record: SQSRecord): void => {
  const payload = record.body;
  if (payload) {
    const item = JSON.parse(payload);
    logger.info('Processed item', { item });
  }
};

export const handler = async (
  event: SQSEvent,
  context: Context
): Promise<SQSBatchResponse> => {
  return processPartialResponseSync(event, recordHandler, processor, {
    context,
    skipGroupOnError: true,
  });
};

Note

Note that SqsFifoPartialProcessor is synchronous using processPartialResponseSync. If you need asynchronous processing while preserving the order of messages in the queue, use SqsFifoPartialProcessorAsync with processPartialResponse.

Processing messages from Kinesis

Processing batches from Kinesis works in three stages:

  1. Instantiate BatchProcessor and choose EventType.KinesisDataStreams for the event type
  2. Define your function to handle each batch record, and use the KinesisStreamRecord type annotation for autocompletion
  3. Use processPartialResponse to kick off processing
Info

This code example optionally uses Logger for completion.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
import {
  BatchProcessor,
  EventType,
  processPartialResponse,
} from '@aws-lambda-powertools/batch';
import { Logger } from '@aws-lambda-powertools/logger';
import type { KinesisStreamHandler, KinesisStreamRecord } from 'aws-lambda';

const processor = new BatchProcessor(EventType.KinesisDataStreams); // (1)!
const logger = new Logger();

const recordHandler = async (record: KinesisStreamRecord): Promise<void> => {
  logger.info('Processing record', { record: record.kinesis.data });
  const payload = JSON.parse(record.kinesis.data);
  logger.info('Processed item', { item: payload });
};

export const handler: KinesisStreamHandler = async (event, context) =>
  processPartialResponse(event, recordHandler, processor, {
    context,
  });
  1. Creates a partial failure batch processor for Kinesis Data Streams. See partial failure mechanics for details

The second record failed to be processed, therefore the processor added its sequence number in the response.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
{
  "Records": [
    {
      "kinesis": {
        "kinesisSchemaVersion": "1.0",
        "partitionKey": "1",
        "sequenceNumber": "4107859083838847772757075850904226111829882106684065",
        "data": "eyJNZXNzYWdlIjogInN1Y2Nlc3MifQ==",
        "approximateArrivalTimestamp": 1545084650.987
      },
      "eventSource": "aws:kinesis",
      "eventVersion": "1.0",
      "eventID": "shardId-000000000006:4107859083838847772757075850904226111829882106684065",
      "eventName": "aws:kinesis:record",
      "invokeIdentityArn": "arn:aws:iam::123456789012:role/lambda-role",
      "awsRegion": "us-east-2",
      "eventSourceARN": "arn:aws:kinesis:us-east-2:123456789012:stream/lambda-stream"
    },
    {
      "kinesis": {
        "kinesisSchemaVersion": "1.0",
        "partitionKey": "1",
        "sequenceNumber": "6006958808509702859251049540584488075644979031228738",
        "data": "c3VjY2Vzcw==",
        "approximateArrivalTimestamp": 1545084650.987
      },
      "eventSource": "aws:kinesis",
      "eventVersion": "1.0",
      "eventID": "shardId-000000000006:6006958808509702859251049540584488075644979031228738",
      "eventName": "aws:kinesis:record",
      "invokeIdentityArn": "arn:aws:iam::123456789012:role/lambda-role",
      "awsRegion": "us-east-2",
      "eventSourceARN": "arn:aws:kinesis:us-east-2:123456789012:stream/lambda-stream"
    }
  ]
}
1
2
3
4
5
6
7
{
  "batchItemFailures": [
    {
      "itemIdentifier": "6006958808509702859251049540584488075644979031228738"
    }
  ]
}

Processing messages from DynamoDB

Processing batches from DynamoDB Streams works in three stages:

  1. Instantiate BatchProcessor and choose EventType.DynamoDBStreams for the event type
  2. Define your function to handle each batch record, and use the DynamoDBRecord type annotation for autocompletion
  3. Use processPartialResponse to kick off processing
Info

This code example optionally uses Logger for completion.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import {
  BatchProcessor,
  EventType,
  processPartialResponse,
} from '@aws-lambda-powertools/batch';
import { Logger } from '@aws-lambda-powertools/logger';
import type { DynamoDBRecord, DynamoDBStreamHandler } from 'aws-lambda';

const processor = new BatchProcessor(EventType.DynamoDBStreams); // (1)!
const logger = new Logger();

const recordHandler = async (record: DynamoDBRecord): Promise<void> => {
  if (record.dynamodb?.NewImage) {
    logger.info('Processing record', { record: record.dynamodb.NewImage });
    const message = record.dynamodb.NewImage.Message.S;
    if (message) {
      const payload = JSON.parse(message);
      logger.info('Processed item', { item: payload });
    }
  }
};

export const handler: DynamoDBStreamHandler = async (event, context) =>
  processPartialResponse(event, recordHandler, processor, {
    context,
  });
  1. Creates a partial failure batch processor for DynamoDB Streams. See partial failure mechanics for details

The second record failed to be processed, therefore the processor added its sequence number in the response.

1
2
3
4
5
6
7
{
  "batchItemFailures": [
    {
      "itemIdentifier": "8640712661"
    }
  ]
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
{
  "Records": [
    {
      "eventID": "1",
      "eventVersion": "1.0",
      "dynamodb": {
        "Keys": {
          "Id": {
            "N": "101"
          }
        },
        "NewImage": {
          "Message": {
            "S": "failure"
          }
        },
        "StreamViewType": "NEW_AND_OLD_IMAGES",
        "SequenceNumber": "3275880929",
        "SizeBytes": 26
      },
      "awsRegion": "us-west-2",
      "eventName": "INSERT",
      "eventSourceARN": "eventsource_arn",
      "eventSource": "aws:dynamodb"
    },
    {
      "eventID": "1",
      "eventVersion": "1.0",
      "dynamodb": {
        "Keys": {
          "Id": {
            "N": "101"
          }
        },
        "NewImage": {
          "SomethingElse": {
            "S": "success"
          }
        },
        "StreamViewType": "NEW_AND_OLD_IMAGES",
        "SequenceNumber": "8640712661",
        "SizeBytes": 26
      },
      "awsRegion": "us-west-2",
      "eventName": "INSERT",
      "eventSourceARN": "eventsource_arn",
      "eventSource": "aws:dynamodb"
    }
  ]
}

Error handling

By default, we catch any exception raised by your record handler function. This allows us to (1) continue processing the batch, (2) collect each batch item that failed processing, and (3) return the appropriate response correctly without failing your Lambda function execution.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
 import {
   BatchProcessor,
   EventType,
   processPartialResponse,
 } from '@aws-lambda-powertools/batch';
 import { Logger } from '@aws-lambda-powertools/logger';
 import type { SQSHandler, SQSRecord } from 'aws-lambda';

 const processor = new BatchProcessor(EventType.SQS);
 const logger = new Logger();

 class InvalidPayload extends Error {
   public constructor(message: string) {
     super(message);
     this.name = 'InvalidPayload';
   }
 }

 const recordHandler = async (record: SQSRecord): Promise<void> => {
   const payload = record.body;
   if (payload) {
     const item = JSON.parse(payload);
     logger.info('Processed item', { item });
   } else {
     throw new InvalidPayload('Payload does not contain minimum required fields'); // (1)!
   }
 };

 export const handler: SQSHandler = async (event, context) =>
   processPartialResponse(event, recordHandler, processor, { // (2)!
     context,
   });
  1. Any exception works here. See extending BatchProcessorSync section, if you want to override this behavior.

  2. Exceptions raised in recordHandler will propagate to process_partial_response.

    We catch them and include each failed batch item identifier in the response dictionary (see Sample response tab).

1
2
3
4
5
6
7
{
  "batchItemFailures": [
    {
      "itemIdentifier": "244fc6b4-87a3-44ab-83d2-361172410c3a"
    }
  ]
}

Partial failure mechanics

All records in the batch will be passed to this handler for processing, even if exceptions are thrown - Here's the behaviour after completing the batch:

  • All records successfully processed. We will return an empty list of item failures {'batchItemFailures': []}
  • Partial success with some exceptions. We will return a list of all item IDs/sequence numbers that failed processing
  • All records failed to be processed. We will throw a FullBatchFailureError error with a list of all the errors thrown while processing unless throwOnFullBatchFailure is disabled.

The following sequence diagrams explain how each Batch processor behaves under different scenarios.

SQS Standard

Read more about Batch Failure Reporting feature in AWS Lambda.

Sequence diagram to explain how BatchProcessor works with SQS Standard queues.

sequenceDiagram
    autonumber
    participant SQS queue
    participant Lambda service
    participant Lambda function
    Lambda service->>SQS queue: Poll
    Lambda service->>Lambda function: Invoke (batch event)
    Lambda function->>Lambda service: Report some failed messages
    activate SQS queue
    Lambda service->>SQS queue: Delete successful messages
    SQS queue-->>SQS queue: Failed messages return
    Note over SQS queue,Lambda service: Process repeat
    deactivate SQS queue
SQS mechanism with Batch Item Failures

SQS FIFO

Read more about Batch Failure Reporting feature in AWS Lambda.

Sequence diagram to explain how SqsFifoPartialProcessor works with SQS FIFO queues without skipGroupOnError flag.

sequenceDiagram
    autonumber
    participant SQS queue
    participant Lambda service
    participant Lambda function
    Lambda service->>SQS queue: Poll
    Lambda service->>Lambda function: Invoke (batch event)
    activate Lambda function
    Lambda function-->Lambda function: Process 2 out of 10 batch items
    Lambda function--xLambda function: Fail on 3rd batch item
    Lambda function->>Lambda service: Report 3rd batch item and unprocessed messages as failure
    deactivate Lambda function
    activate SQS queue
    Lambda service->>SQS queue: Delete successful messages (1-2)
    SQS queue-->>SQS queue: Failed messages return (3-10)
    deactivate SQS queue
SQS FIFO mechanism with Batch Item Failures

Sequence diagram to explain how SqsFifoPartialProcessor works with SQS FIFO queues with skipGroupOnError flag.

sequenceDiagram
    autonumber
    participant SQS queue
    participant Lambda service
    participant Lambda function
    Lambda service->>SQS queue: Poll
    Lambda service->>Lambda function: Invoke (batch event)
    activate Lambda function
    Lambda function-->Lambda function: Process 2 out of 10 batch items
    Lambda function--xLambda function: Fail on 3rd batch item
    Lambda function-->Lambda function: Process messages from another MessageGroupID
    Lambda function->>Lambda service: Report 3rd batch item and all messages within the same MessageGroupID as failure
    deactivate Lambda function
    activate SQS queue
    Lambda service->>SQS queue: Delete successful messages processed
    SQS queue-->>SQS queue: Failed messages return
    deactivate SQS queue
SQS FIFO mechanism with Batch Item Failures

Kinesis and DynamoDB Streams

Read more about Batch Failure Reporting feature.

Sequence diagram to explain how BatchProcessor works with both Kinesis Data Streams and DynamoDB Streams.

For brevity, we will use Streams to refer to either services. For theory on stream checkpoints, see this blog post

sequenceDiagram
    autonumber
    participant Streams
    participant Lambda service
    participant Lambda function
    Lambda service->>Streams: Poll latest records
    Lambda service->>Lambda function: Invoke (batch event)
    activate Lambda function
    Lambda function-->Lambda function: Process 2 out of 10 batch items
    Lambda function--xLambda function: Fail on 3rd batch item
    Lambda function-->Lambda function: Continue processing batch items (4-10)
    Lambda function->>Lambda service: Report batch item as failure (3)
    deactivate Lambda function
    activate Streams
    Lambda service->>Streams: Checkpoints to sequence number from 3rd batch item
    Lambda service->>Streams: Poll records starting from updated checkpoint
    deactivate Streams
Kinesis and DynamoDB streams mechanism with single batch item failure

The behavior changes slightly when there are multiple item failures. Stream checkpoint is updated to the lowest sequence number reported.

Note that the batch item sequence number could be different from batch item number in the illustration.

sequenceDiagram
    autonumber
    participant Streams
    participant Lambda service
    participant Lambda function
    Lambda service->>Streams: Poll latest records
    Lambda service->>Lambda function: Invoke (batch event)
    activate Lambda function
    Lambda function-->Lambda function: Process 2 out of 10 batch items
    Lambda function--xLambda function: Fail on 3-5 batch items
    Lambda function-->Lambda function: Continue processing batch items (6-10)
    Lambda function->>Lambda service: Report batch items as failure (3-5)
    deactivate Lambda function
    activate Streams
    Lambda service->>Streams: Checkpoints to lowest sequence number
    Lambda service->>Streams: Poll records starting from updated checkpoint
    deactivate Streams
Kinesis and DynamoDB streams mechanism with multiple batch item failures

Async or sync processing

There are two processors you can use with this utility:

  • BatchProcessor and processPartialResponse – Processes messages asynchronously
  • BatchProcessorSync and processPartialResponseSync – Processes messages synchronously

In most cases your function will be async returning a Promise. Therefore, the BatchProcessor is the default processor handling your batch records asynchronously. There are use cases where you need to process the batch records synchronously. For example, when you need to process multiple records at the same time without conflicting with one another. For such cases we recommend to use the BatchProcessorSync and processPartialResponseSync functions.

Note that you need match your processing function with the right batch processor

*If your function is async returning a Promise, use BatchProcessor and processPartialResponse * If your function is not async, use BatchProcessorSync and processPartialResponseSync

The difference between the two processors is in how they handle record processing:

  • BatchProcessor: By default, it processes records in parallel using Promise.all(). However, it also offers an option to process records sequentially, preserving the order.
  • BatchProcessorSync: Always processes records sequentially, ensuring the order is preserved by looping through each record one by one.
When is this useful?

For example, imagine you need to process multiple loyalty points and incrementally save in a database. While you await the database to confirm your records are saved, you could start processing another request concurrently.

The reason this is not the default behaviour is that not all use cases can handle concurrency safely (e.g., loyalty points must be updated in order).

Advanced

Accessing processed messages

Use the BatchProcessor directly in your function to access a list of all returned values from your recordHandler function.

  • When successful. We will include a tuple with success, the result of recordHandler, and the batch record
  • When failed. We will include a tuple with fail, exception as a string, and the batch record
Accessing processed messages
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import { BatchProcessor, EventType } from '@aws-lambda-powertools/batch';
import { Logger } from '@aws-lambda-powertools/logger';
import type { SQSHandler, SQSRecord } from 'aws-lambda';

const processor = new BatchProcessor(EventType.SQS);
const logger = new Logger();

const recordHandler = (record: SQSRecord): void => {
  const payload = record.body;
  if (payload) {
    const item = JSON.parse(payload);
    logger.info('Processed item', { item });
  }
};

export const handler: SQSHandler = async (event, context) => {
  const batch = event.Records; // (1)!

  processor.register(batch, recordHandler, { context }); // (2)!
  const processedMessages = await processor.process();

  for (const message of processedMessages) {
    const [status, error, record] = message;

    logger.info('Processed record', { status, record, error });
  }

  return processor.response();
};
  1. The processor requires the records array. This is typically handled by processPartialResponse.
  2. You need to register the batch, the recordHandler function, and optionally the context to access the Lambda context.

Accessing Lambda Context

Within your recordHandler function, you might need access to the Lambda context to determine how much time you have left before your function times out.

We can automatically inject the Lambda context into your recordHandler as optional second argument if you register it when using BatchProcessorSync or the processPartialResponseSync function.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import {
  BatchProcessor,
  EventType,
  processPartialResponse,
} from '@aws-lambda-powertools/batch';
import { Logger } from '@aws-lambda-powertools/logger';
import type { Context, SQSHandler, SQSRecord } from 'aws-lambda';

const processor = new BatchProcessor(EventType.SQS);
const logger = new Logger();

const recordHandler = (record: SQSRecord, lambdaContext?: Context): void => {
  const payload = record.body;
  if (payload) {
    const item = JSON.parse(payload);
    logger.info('Processed item', { item });
  }
  if (lambdaContext) {
    logger.info('Remaining time', {
      time: lambdaContext.getRemainingTimeInMillis(),
    });
  }
};

export const handler: SQSHandler = async (event, context) =>
  processPartialResponse(event, recordHandler, processor, {
    context,
  });

Working with full batch failures

By default, the BatchProcessor will throw a FullBatchFailureError if all records in the batch fail to process, we do this to reflect the failure in your operational metrics.

When working with functions that handle batches with a small number of records, or when you use errors as a flow control mechanism, this behavior might not be desirable as your function might generate an unnaturally high number of errors. When this happens, the Lambda service will scale down the concurrency of your function, potentially impacting performance.

For these scenarios, you can set the throwOnFullBatchFailure option to false when calling.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
import {
  BatchProcessor,
  EventType,
  processPartialResponse,
} from '@aws-lambda-powertools/batch';
import type { SQSHandler, SQSRecord } from 'aws-lambda';

const processor = new BatchProcessor(EventType.SQS);

const recordHandler = async (_record: SQSRecord): Promise<void> => {
  // Process the record
};

export const handler: SQSHandler = async (event, context) =>
  processPartialResponse(event, recordHandler, processor, {
    context,
    throwOnFullBatchFailure: false,
  });

Extending BatchProcessor

You might want to bring custom logic to the existing BatchProcessor to slightly override how we handle successes and failures.

For these scenarios, you can subclass BatchProcessor and quickly override successHandler and failureHandler methods:

  • successHandler() – Keeps track of successful batch records
  • failureHandler() – Keeps track of failed batch records

Let's suppose you'd like to add a metric named BatchRecordFailures for each batch record that failed processing

Extending failure handling mechanism in BatchProcessor
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import {
  BatchProcessor,
  EventType,
  processPartialResponse,
} from '@aws-lambda-powertools/batch';
import type {
  EventSourceDataClassTypes,
  FailureResponse,
} from '@aws-lambda-powertools/batch/types';
import { Logger } from '@aws-lambda-powertools/logger';
import { MetricUnit, Metrics } from '@aws-lambda-powertools/metrics';
import type { SQSHandler, SQSRecord } from 'aws-lambda';

class MyProcessor extends BatchProcessor {
  #metrics: Metrics;

  public constructor(eventType: keyof typeof EventType) {
    super(eventType);
    this.#metrics = new Metrics({ namespace: 'test' });
  }

  public failureHandler(
    record: EventSourceDataClassTypes,
    error: Error
  ): FailureResponse {
    this.#metrics.addMetric('BatchRecordFailures', MetricUnit.Count, 1);

    return super.failureHandler(record, error);
  }
}

const processor = new MyProcessor(EventType.SQS);
const logger = new Logger();

const recordHandler = (record: SQSRecord): void => {
  const payload = record.body;
  if (payload) {
    const item = JSON.parse(payload);
    logger.info('Processed item', { item });
  }
};

export const handler: SQSHandler = async (event, context) =>
  processPartialResponse(event, recordHandler, processor, {
    context,
  });

Sequential async processing

By default, the BatchProcessor processes records in parallel using Promise.all(). However, if you need to preserve the order of records, you can set the processInParallel option to false to process records sequentially.

If the processInParallel option is not provided, the BatchProcessor will process records in parallel.

Sequential async processing
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
import {
  BatchProcessor,
  EventType,
  processPartialResponse,
} from '@aws-lambda-powertools/batch';
import type { SQSHandler, SQSRecord } from 'aws-lambda';

const processor = new BatchProcessor(EventType.SQS);

const recordHandler = async (_record: SQSRecord): Promise<void> => {
  // Process the record
};

export const handler: SQSHandler = async (event, context) =>
  processPartialResponse(event, recordHandler, processor, {
    context,
    processInParallel: false,
  });

Create your own partial processor

You can create your own partial batch processor from scratch by inheriting the BasePartialProcessor class, and implementing the prepare(), clean(), processRecord() and processRecordSync() abstract methods.

classDiagram
    direction LR
    class BasePartialProcessor {
        <<interface>>
        +prepare()
        +clean()
        +processRecord(record: BaseRecord)
        +processRecordSync(record: BaseRecord)
    }
    class YourCustomProcessor {
        +prepare()
        +clean()
        +processRecord(record: BaseRecord)
        +processRecordSyc(record: BaseRecord)
    }
    BasePartialProcessor <|-- YourCustomProcessor : extends
Visual representation to bring your own processor

  • prepare() – called once as part of the processor initialization
  • clean() – teardown logic called once after processRecord completes
  • processRecord() – If you need to implement asynchronous logic, use this method, otherwise define it in your class with empty logic
  • processRecordSync() – handles all processing logic for each individual message of a batch, including calling the recordHandler (this.handler)

You can then use this class as a context manager, or pass it to processPartialResponseSync to process the records in your Lambda handler function.

Creating a custom batch processor
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import { randomInt } from 'node:crypto';
import {
  BasePartialBatchProcessor,
  EventType,
  processPartialResponse,
} from '@aws-lambda-powertools/batch';
import type {
  BaseRecord,
  FailureResponse,
  SuccessResponse,
} from '@aws-lambda-powertools/batch/types';
import {
  BatchWriteItemCommand,
  DynamoDBClient,
} from '@aws-sdk/client-dynamodb';
import { marshall } from '@aws-sdk/util-dynamodb';
import type { SQSHandler } from 'aws-lambda';

const tableName = process.env.TABLE_NAME || 'table-not-found';

class MyPartialProcessor extends BasePartialBatchProcessor {
  #tableName: string;
  #client?: DynamoDBClient;

  public constructor(tableName: string) {
    super(EventType.SQS);
    this.#tableName = tableName;
  }

  /**
   * It's called once, **after** processing the batch.
   *
   * Here we are writing all the processed messages to DynamoDB.
   */
  public clean(): void {
    // biome-ignore lint/style/noNonNullAssertion: We know that the client is defined because clean() is called after prepare()
    this.#client!.send(
      new BatchWriteItemCommand({
        RequestItems: {
          [this.#tableName]: this.successMessages.map((message) => ({
            PutRequest: {
              Item: marshall(message),
            },
          })),
        },
      })
    );
  }

  /**
   * It's called once, **before** processing the batch.
   *
   * It initializes a new client and cleans up any existing data.
   */
  public prepare(): void {
    this.#client = new DynamoDBClient({});
    this.successMessages = [];
  }

  public async processRecord(
    _record: BaseRecord
  ): Promise<SuccessResponse | FailureResponse> {
    throw new Error('Not implemented');
  }

  /**
   * It handles how your record is processed.
   *
   * Here we are keeping the status of each run, `this.handler` is
   * the function that is passed when calling `processor.register()`.
   */
  public processRecordSync(
    record: BaseRecord
  ): SuccessResponse | FailureResponse {
    try {
      const result = this.handler(record);

      return this.successHandler(record, result);
    } catch (error) {
      return this.failureHandler(record, error as Error);
    }
  }
}

const processor = new MyPartialProcessor(tableName);

const recordHandler = (): number => {
  return Math.floor(randomInt(1, 10));
};

export const handler: SQSHandler = async (event, context) =>
  processPartialResponse(event, recordHandler, processor, {
    context,
  });

Tracing with AWS X-Ray

You can use Tracer to create subsegments for each batch record processed. To do so, you can open a new subsegment for each record, and close it when you're done processing it. When adding annotations and metadata to the subsegment, you can do so directly without calling tracer.setSegment(subsegment). This allows you to work with the subsegment directly and avoid having to either pass the parent subsegment around or have to restore the parent subsegment at the end of the record processing.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import {
  BatchProcessor,
  EventType,
  processPartialResponse,
} from '@aws-lambda-powertools/batch';
import { Tracer } from '@aws-lambda-powertools/tracer';
import { captureLambdaHandler } from '@aws-lambda-powertools/tracer/middleware';
import middy from '@middy/core';
import type { SQSEvent, SQSHandler, SQSRecord } from 'aws-lambda';

const processor = new BatchProcessor(EventType.SQS);
const tracer = new Tracer({ serviceName: 'serverlessAirline' });

const recordHandler = async (record: SQSRecord): Promise<void> => {
  const subsegment = tracer.getSegment()?.addNewSubsegment('### recordHandler'); // (1)!
  subsegment?.addAnnotation('messageId', record.messageId); // (2)!

  const payload = record.body;
  if (payload) {
    try {
      const item = JSON.parse(payload);
      // do something with the item
      subsegment?.addMetadata('item', item);
    } catch (error) {
      subsegment?.addError(error);
      throw error;
    }
  }

  subsegment?.close(); // (3)!
};

export const handler: SQSHandler = middy(async (event: SQSEvent, context) =>
  processPartialResponse(event, recordHandler, processor, {
    context,
  })
).use(captureLambdaHandler(tracer));
  1. Retrieve the current segment, then create a subsegment for the record being processed
  2. You can add annotations and metadata to the subsegment directly without calling tracer.setSegment(subsegment)
  3. Close the subsegment when you're done processing the record

Testing your code

As there is no external calls, you can unit test your code with BatchProcessorSync quite easily.

Example:

Given a SQS batch where the first batch record succeeds and the second fails processing, we should have a single item reported in the function response.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import { handler, processor } from './gettingStartedSQS';
import sqsEvent from './samples/sampleSQSEvent.json';

const context = {
  callbackWaitsForEmptyEventLoop: true,
  functionVersion: '$LATEST',
  functionName: 'foo-bar-function',
  memoryLimitInMB: '128',
  logGroupName: '/aws/lambda/foo-bar-function-123456abcdef',
  logStreamName: '2021/03/09/[$LATEST]abcdef123456abcdef123456abcdef123456',
  invokedFunctionArn:
    'arn:aws:lambda:eu-west-1:123456789012:function:foo-bar-function',
  awsRequestId: 'c6af9ac6-7b61-11e6-9a41-93e812345678',
  getRemainingTimeInMillis: () => 1234,
  done: () => console.log('Done!'),
  fail: () => console.log('Failed!'),
  succeed: () => console.log('Succeeded!'),
};

describe('Function tests', () => {
  beforeEach(() => {
    jest.clearAllMocks();
  });

  test('should return one failed message', async () => {
    // Prepare
    const processorResult = processor; // access processor for additional assertions
    const successfulRecord = sqsEvent.Records[0];
    const failedRecord = sqsEvent.Records[1];
    const expectedResponse = {
      batchItemFailures: [
        {
          itemIdentifier: failedRecord.messageId,
        },
      ],
    };

    // Act
    const response = await handler(sqsEvent, context, () => {});

    // Assess
    expect(response).toEqual(expectedResponse);
    expect(processorResult.failureMessages).toHaveLength(1);
    expect(processorResult.successMessages[0]).toEqual(successfulRecord);
  });
});
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import {
  BatchProcessor,
  EventType,
  processPartialResponse,
} from '@aws-lambda-powertools/batch';
import { Logger } from '@aws-lambda-powertools/logger';
import type { SQSHandler, SQSRecord } from 'aws-lambda';

const processor = new BatchProcessor(EventType.SQS); // (1)!
const logger = new Logger();

// biome-ignore format: we need the comment in the next line to stay there to annotate the code snippet in the docs
const recordHandler = async (record: SQSRecord): Promise<void> => { // (2)!
  const payload = record.body;
  if (payload) {
    const item = JSON.parse(payload);
    logger.info('Processed item', { item });
  }
};

export const handler: SQSHandler = async (event, context) =>
  // biome-ignore format: we need the comment in the next line to stay there to annotate the code snippet in the docs
  processPartialResponse(event, recordHandler, processor, { // (3)!
    context,
  });

export { processor };
events/sqs_event.json
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
{
  "Records": [
    {
      "messageId": "059f36b4-87a3-44ab-83d2-661975830a7d",
      "receiptHandle": "AQEBwJnKyrHigUMZj6rYigCgxlaS3SLy0a",
      "body": "{\"Message\": \"success\"}",
      "attributes": {
        "ApproximateReceiveCount": "1",
        "SentTimestamp": "1545082649183",
        "SenderId": "AIDAIENQZJOLO23YVJ4VO",
        "ApproximateFirstReceiveTimestamp": "1545082649185"
      },
      "messageAttributes": {},
      "md5OfBody": "e4e68fb7bd0e697a0ae8f1bb342846b3",
      "eventSource": "aws:sqs",
      "eventSourceARN": "arn:aws:sqs:us-east-2: 123456789012:my-queue",
      "awsRegion": "us-east-1"
    },
    {
      "messageId": "244fc6b4-87a3-44ab-83d2-361172410c3a",
      "receiptHandle": "AQEBwJnKyrHigUMZj6rYigCgxlaS3SLy0a",
      "body": "SGVsbG8sIHRoaXMgaXMgYSB0ZXN0Lg==",
      "attributes": {
        "ApproximateReceiveCount": "1",
        "SentTimestamp": "1545082649183",
        "SenderId": "AIDAIENQZJOLO23YVJ4VO",
        "ApproximateFirstReceiveTimestamp": "1545082649185"
      },
      "messageAttributes": {},
      "md5OfBody": "e4e68fb7bd0e697a0ae8f1bb342846b3",
      "eventSource": "aws:sqs",
      "eventSourceARN": "arn:aws:sqs:us-east-2: 123456789012:my-queue",
      "awsRegion": "us-east-1"
    }
  ]
}