Module aws_lambda_powertools.metrics.metric
Expand source code
# NOTE: prevents circular inheritance import
from .base import SingleMetric, single_metric
__all__ = ["SingleMetric", "single_metric"]
Functions
def single_metric(name: str, unit: MetricUnit, value: float, namespace: Optional[str] = None) ‑> Generator[SingleMetric, None, None]
-
Context manager to simplify creation of a single metric
Example
Creates cold start metric with function_version as dimension
from aws_lambda_powertools import single_metric from aws_lambda_powertools.metrics import MetricUnit with single_metric(name="ColdStart", unit=MetricUnit.Count, value=1, namespace="ServerlessAirline") as metric: metric.add_dimension(name="function_version", value="47")
Same as above but set namespace using environment variable
$ export POWERTOOLS_METRICS_NAMESPACE="ServerlessAirline" from aws_lambda_powertools import single_metric from aws_lambda_powertools.metrics import MetricUnit with single_metric(name="ColdStart", unit=MetricUnit.Count, value=1) as metric: metric.add_dimension(name="function_version", value="47")
Parameters
name
:str
- Metric name
unit
:MetricUnit
aws_lambda_powertools.helper.models.MetricUnit
value
:float
- Metric value
namespace
:str
- Namespace for metrics
Yields
SingleMetric
- SingleMetric class instance
Raises
MetricUnitError
- When metric metric isn't supported by CloudWatch
MetricValueError
- When metric value isn't a number
SchemaValidationError
- When metric object fails EMF schema validation
Expand source code
@contextmanager def single_metric( name: str, unit: MetricUnit, value: float, namespace: Optional[str] = None ) -> Generator[SingleMetric, None, None]: """Context manager to simplify creation of a single metric Example ------- **Creates cold start metric with function_version as dimension** from aws_lambda_powertools import single_metric from aws_lambda_powertools.metrics import MetricUnit with single_metric(name="ColdStart", unit=MetricUnit.Count, value=1, namespace="ServerlessAirline") as metric: metric.add_dimension(name="function_version", value="47") **Same as above but set namespace using environment variable** $ export POWERTOOLS_METRICS_NAMESPACE="ServerlessAirline" from aws_lambda_powertools import single_metric from aws_lambda_powertools.metrics import MetricUnit with single_metric(name="ColdStart", unit=MetricUnit.Count, value=1) as metric: metric.add_dimension(name="function_version", value="47") Parameters ---------- name : str Metric name unit : MetricUnit `aws_lambda_powertools.helper.models.MetricUnit` value : float Metric value namespace: str Namespace for metrics Yields ------- SingleMetric SingleMetric class instance Raises ------ MetricUnitError When metric metric isn't supported by CloudWatch MetricValueError When metric value isn't a number SchemaValidationError When metric object fails EMF schema validation """ metric_set: Optional[Dict] = None try: metric: SingleMetric = SingleMetric(namespace=namespace) metric.add_metric(name=name, unit=unit, value=value) yield metric metric_set = metric.serialize_metric_set() finally: print(json.dumps(metric_set, separators=(",", ":")))
Classes
class SingleMetric (metric_set: Optional[Dict[str, Any]] = None, dimension_set: Optional[Dict[~KT, ~VT]] = None, namespace: Optional[str] = None, metadata_set: Optional[Dict[str, Any]] = None, service: Optional[str] = None)
-
SingleMetric creates an EMF object with a single metric.
EMF specification doesn't allow metrics with different dimensions. SingleMetric overrides MetricManager's add_metric method to do just that.
Use
single_metric()
when you need to create metrics with different dimensions, otherwiseMetrics
is a more cost effective optionEnvironment Variables
POWERTOOLS_METRICS_NAMESPACE : str metric namespace
Example
Creates cold start metric with function_version as dimension
import json from aws_lambda_powertools.metrics import single_metric, MetricUnit metric = single_metric(namespace="ServerlessAirline") metric.add_metric(name="ColdStart", unit=MetricUnit.Count, value=1) metric.add_dimension(name="function_version", value=47) print(json.dumps(metric.serialize_metric_set(), indent=4))
Parameters
MetricManager
:MetricManager
- Inherits from
MetricManager
Expand source code
class SingleMetric(MetricManager): """SingleMetric creates an EMF object with a single metric. EMF specification doesn't allow metrics with different dimensions. SingleMetric overrides MetricManager's add_metric method to do just that. Use `single_metric` when you need to create metrics with different dimensions, otherwise `aws_lambda_powertools.metrics.metrics.Metrics` is a more cost effective option Environment variables --------------------- POWERTOOLS_METRICS_NAMESPACE : str metric namespace Example ------- **Creates cold start metric with function_version as dimension** import json from aws_lambda_powertools.metrics import single_metric, MetricUnit metric = single_metric(namespace="ServerlessAirline") metric.add_metric(name="ColdStart", unit=MetricUnit.Count, value=1) metric.add_dimension(name="function_version", value=47) print(json.dumps(metric.serialize_metric_set(), indent=4)) Parameters ---------- MetricManager : MetricManager Inherits from `aws_lambda_powertools.metrics.base.MetricManager` """ def add_metric(self, name: str, unit: Union[MetricUnit, str], value: float) -> None: """Method to prevent more than one metric being created Parameters ---------- name : str Metric name (e.g. BookingConfirmation) unit : MetricUnit Metric unit (e.g. "Seconds", MetricUnit.Seconds) value : float Metric value """ if len(self.metric_set) > 0: logger.debug(f"Metric {name} already set, skipping...") return return super().add_metric(name, unit, value)
Ancestors
Methods
def add_metric(self, name: str, unit: Union[MetricUnit, str], value: float) ‑> None
-
Method to prevent more than one metric being created
Parameters
name
:str
- Metric name (e.g. BookingConfirmation)
unit
:MetricUnit
- Metric unit (e.g. "Seconds", MetricUnit.Seconds)
value
:float
- Metric value
Expand source code
def add_metric(self, name: str, unit: Union[MetricUnit, str], value: float) -> None: """Method to prevent more than one metric being created Parameters ---------- name : str Metric name (e.g. BookingConfirmation) unit : MetricUnit Metric unit (e.g. "Seconds", MetricUnit.Seconds) value : float Metric value """ if len(self.metric_set) > 0: logger.debug(f"Metric {name} already set, skipping...") return return super().add_metric(name, unit, value)
Inherited members